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Abstract

In previous research, we demonstrated a sophisticated computer-assisted drawing program
calledDruid, which permits easy construction of21/2D scenes. A 21/2D scene is a representa-
tion of surfaces that is fundamentally two-dimensional, but which also represents the relative
depths of those surfaces in the third dimension. This paper greatly improvesDruid’s efficiency
by exploitating a topological constraint on 21/2D scenes which we call acrossing-state equiva-
lence class. This paper describes this constraint and how it is used byDruid.
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1 Introduction

Conventional drawing programs [1, 2, 4, 5] rely on the use of layers for ordering the surfaces in a
drawing from top to bottom. This approach unnecessarily imposes a partial ordering on the depths
of the surfaces and prevents the user from creating a large class of potential drawings,e.g., of Celtic
knots and interwoven surfaces. Our research focuses on the development of a novel representation
for drawings which only requires local depth ordering of segments of the boundaries of surfaces in
a drawing rather than a global depth relation between entire surfaces.

2 Overview of this Paper

In this paper, we first describe an important limitation of conventional drawing programs. We then
describe a novel representation for surfaces which has significant advantages when compared to
those used in existing drawing programs and explain how our program,Druid, uses this representa-
tion (see Wiley and Williams [7]).

We then describe a previously unrealized topological constraint on 21/2D scenes. This constraint
is termed acrossing-state equivalence class. Exploitation of crossing-state equivalence classes
permits us to significantly improveDruid’s performance, thus increasing the complexity of drawings
that a user can construct. To simplify our exposition, where it is important to distinguish between
the version ofDruid described in [7] and the version ofDruid described in this paper, we useDruid
(OLD) andDruid (NEW), respectively.

3 Computer-Assisted Drawing

One function of a drawing program is to allow the creation and manipulation of drawings of over-
lapping surfaces, which we call21/2D scenes. A 21/2D scene is a representation of surfaces that is
fundamentally two-dimensional, but which also represents the relative depths of those surfaces in the
third dimension. Our program, calledDruid, permits the construction of interwoven 21/2D scenes
[7]. To accomplish this,Druid useslabeled knot-diagramsto represent surfaces (see Williams [8]).

Using existing programs, a drawing can easily be created in which multiple surfaces overlap in
variousregions. When multiple surfaces overlap, the program must have a means of representing
which surface is on top for each overlapping pair of regions. Existing drawing programs solve this
problem by representing drawings as a set of layers where each surface resides in a single layer.
For any given pair of surfaces, the one that resides in the upper (or shallower) layer is assigned
a smaller depth index and appears above wherever those two surfaces overlap. Consequently, the
use of layers implies that the surfaces relative depth relation is a directed acyclic graph (DAG). No
subset of surfaces can interweave because this would require a cycle in the graph representing the
relative depth relation. (Fig. 1). Because the representation employed by these programs does not
span the full space of 21/2D scenes, they preclude many common drawings which a user may wish
to construct (Fig. 2).
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Figure 1: The classic approach to representing relative surface depths is to assign the surfaces to
distinct layers (top left). It follows that the surface relative depth relation is a directed acyclic graph
(DAG). No subset of surfaces can interweave because this would require a cycle in the graph (top
right). This approach precludes interwoven drawings (bottom left) in which the surface relative
depth relation has cycles (bottom right).
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Figure 2:Druid permits the construction of drawings of interwoven surfaces, such as those shown
here.
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4 Labeled Knot-Diagrams

Druid differs from conventional drawing programs in that it permits the construction of interwoven
scenes. In order to build such a tool, it was necessary to develop a fundamentally new approach for
the representation of drawings. Existing drawing programs represent a drawing as a set of regions
which comprise the interiors of a set of surfaces. In constrast,Druid represents theboundariesof
surfaces and is not concerned with the regions interior to a surface until the final rendering step.

Druid represents a 21/2D scene as alabeled knot-diagram[8]. A knot-diagramis a projection
of a set of closed curves onto a plane and indicates which curve is above wherever two intersect
(Fig. 3, top). Williams extended ordinary knot-diagrams to include asign of occlusionfor every
boundary and adepth indexfor every boundary segment (Fig. 3, bottom). The sign of occlusion can
be illustrated with an arrow denoting a bounded surface to the right with respect to a traversal of the
boundary in the arrow’s direction. Alternatively, it can be denoted using a series of hash marks on
the occluding side of the boundary.
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Figure 3: Aknot-diagram(top) is a projection of a set of closed curves onto a plane together with
indications of which is on top at every crossing. Alabeled knot-diagram(bottom, see Williams [8])
is a knot-diagram with a sign of occlusion for every boundary and a depth index for every boundary
segment. Arrows show the signs of occlusion for the boundaries, always denoting a surface bounded
to the right of a boundary with respect to a traversal of the boundary in the direction of the arrow.
The sign of occlusion can also be illustrated with a series of hash marks on the occluding side of the
boundary.

Druid uses a combination of branch-and-bound search and constraint propagation (see Waltz
[6]) to assign a labeling to a knot-diagram. This is calledlabeling a figure. A problem closely
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related to labeling isrelabeling, in which one labeled figure is transformed into another related
figure satisfying an additional constraint. When relabeling,Druid (OLD) used a highly optimized
tree-search of the space of possible labelings to find the best labeling,i.e., theminimum-difference
labelingwith respect to the labeling that existed prior to the search [7].

The process of labeling a knot-diagram is analogous to Huffman’sscene-labeling(see Huffman
[3]), in which he developed a system for labeling the edges of a scene of stacked blocks. InDruid,
the labeling consists of signs-of-occlusion, crossing-states, and segment depth indices. Thelabeling
schemeis a set of local constraints on the relative depths of the four boundary segments that meet
at a crossing (Fig. 4). If every crossing in a labeled knot-diagram satisfies the labeling scheme, the
labeling is alegal labelingand represents a scene of topologically valid surfaces. Legal labelings
can be rendered,i.e., translated into images in which the interiors of surfaces are filled with solid
color.
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Figure 4: Thelabeling scheme(see Williams [8]) is a set of constraints on the depths of the four
boundary segments that meet at a crossing. If every crossing in a labeling honors the labeling
scheme then the labeling islegal and can be rendered. The upper boundary must have the same
depth,x, on both sides of the crossing. If the lower boundary is at depthy in the unoccluded region,
then it must have a depth ofy + 1 in the occluded region (shown shaded), as defined by the upper
boundary’s sign of occlusion. Finally, the lower boundary must reside beneath the upper boundary,
thus,y must be greater than or equal tox.

Druid (OLD) supported a user interaction which we termed acrossing flip. A crossing flip is an
interaction in which the user inverts the relative ordering of two surfaces within a region of overlap.
Following a crossing flip,Druid must quickly relabel the drawing. A fast response time is crucial to
the quality of the user’s experience, soDruid must relabel the drawing as quickly as possible.Druid
(OLD) would relabel the knot-diagram by searching for the new labeling that most likely matches the
user’s intent. However, we have subsequently discovered a property of 21/2D scenes which we call
thecrossing-state equivalence class rulewhich states that a labeled knot-diagram contains sets of
crossings,i.e., crossing-state equivalence classes, which are constrained to flip as units during any
relabeling. Druid (NEW)’s method of relabeling exploits the crossing-state equivalence class rule
to directly deduce the new labeling without performing a search. Consequently, the new method is
much faster than the old method.
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5 Demonstration ofDruid

Fig. 5 demonstrates howDruid is used.Druid uses closed B-splines to represent the boundaries of
surfaces. Spline control points are defined in either a clockwise order to createsolids(A, numbers
denote control point order) or in a counter-clockwise order to createholes(B andD). Crossings are
clicked to perform a crossing flip (C andE). Whenever the drawing is legal (B-E) it can berendered
(F rendersE).

Figure 5: Demonstration ofDruid. Spline control points are defined in either a clockwise order
to create solids (A, numbers denote control point order) or in a counter-clockwise order to create
holes (B andD). Crossings are clicked to flip overlapping surface regions (C andE). Whenever
the drawing is legally labeled (B-E), the figure can be rendered (F rendersE). In this example, the
surface has been made partially transparent.

Note that there is a natural logic to the operations illustrated in Fig. 5. For example, to alter
the depth ordering of various overlapping regions, the user merely clicks on a crossing to invert
its crossing-state.Druid then does all of the computation necessary to keep the labeling legal. To
achieve a similar transformation in other drawing programs, the user would have to perform less
natural actions [1, 2, 4, 5].
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6 Finding a Legal Labeling

In Druid (OLD), user interactions that caused changes to the knot-diagram’s topology required a
search for a new legal labeling. The new labeling was theminimum-difference labelingwith respect
to the labeling that preceded the user’s interaction. We wanted this behavior because we believe that
the minimum-difference labeling is the most likely labeling to match the user’s intent. Devising an
algorithm to find the minimum-difference labeling quickly is difficult because the search space may
be extremely large relative to the complexity of the drawing.

When the user interacts with the drawing and invalidates the current labeling,Druid must find a
minimum-difference legal labeling as quickly as possible.Druid can find the minimum-difference
labeling using either of two methods.Druid (OLD) performed a search of the space of all possible
labelings. In contrast,Druid (NEW) directly deduces the result of a crossing flip by flipping all of the
crossings in the equivalence class containing the crossing as a unit and propagating the necessary
depth changes through the knot-diagram.

When the user clicks on a crossing to flip its crossing-state, the user imposes a constraint that
is inconsistent with the present labeling. This user specified change will result in additional non-
specified changes in the labeling,e.g., to the states of other crossings and/or the depths of boundary
segments. The search takes the form of aconstraint-propagationprocess similar to Waltz filtering
(see Waltz [6]). Waltz’s research illustrated how certain combinatorially complex graph-labeling
problems can be reduced to unique solutions through a process called constraint-propagation. In
a graph-labeling problem, when one vertex of a graph is labeled, this constrains adjacent vertices,
which in turn propagate their own constraints deeper into the graph. By means of this process, it is
often the case that an apparently ambiguous labeling problem can be reduced to a single consistent
labeling.

7 Crossing-State Equivalence Classes

Previously,Druid performed a search whenever a new labeling was required [7]. Despite a number
of optimizations intended to speed up the search,Druid remained inherently limited in the complex-
ity of drawings that it could handle. Drawings exceeding a certain degree of complexity required
unacceptably long search times. In this paper, we describe a new constraint on 21/2D scenes which
when exploited, improvesDruid’s performance significantly. Consequently, users can construct
much more complex drawings than they could previously.

The remainder of this paper describes a topological property of 21/2D scenes which we call the
crossing-state equivalence class rule. This property can be exploited byDruid to relabel a labeled
knot-diagram without performing a search.

8 Definition of Key Concepts

Fig. 6 shows a 21/2D scene of interwoven surfaces. A section of a boundary joining two crossings is
termed aboundary segment. We observe that the canvas is partitioned into disjointregionsseparated
by boundary segments. In Fig. 6, the regions of the canvas are labeled with letters. We observe that
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every region is covered by zero or more surfaces (numbered in Fig. 6). For example, regionk is
covered by surfaces1 and3 while regionm is covered by surfaces1, 2, and3.
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Figure 6: An interwoven 21/2D scene. Regions are labeled with letters, surfaces with numbers, and
crossing-state equivalence classes with shapes.

To define and prove the crossing-state equivalence class rule, we first define the following terms:

• A superregionis a set of contiguous regions covered by a single surface. For example, in Fig.
6, {b, g, h, n} is a superregion of surface2.

• A borderof a superregion is the set of boundary segments which define its perimeter.
• A shared superregionis the maximum superregion common to two surfaces,e.g., {g, m} is a

shared superregion of surfaces1 and2.
• A corner of a shared superregion is a crossing where adjacent boundary segments of the

border belong to different surfaces. In Fig. 6, corners corresponding to the shared superregion
{m, n} common to surfaces2 and3 are marked with circles.

The corners of a shared superregion comprise thecrossing-state equivalence classfor that
shared superregion. Notice that every crossing in a drawing is a corner of some shared superre-
gion. Consequently, every crossing is a member of some crossing-state equivalence class.

9 Reducing General 21/2D Scenes to Simple 21/2D Scenes

A simple surfaceis a surface with a single boundary component which does not intersect itself,
i.e., a Jordon curve. Two steps are required to reduce a general 21/2D scene to a simple 21/2D
scene. First, any surface with multiple boundary components (a surface containing holes) must be
converted into a surface with a single boundary component. Second, any self-overlapping surfaces
must be converted into a set of non-self-overlapping surfaces.

We perform both surface conversions usingcuts[7]. A cut is analogous to a scissor cut through
a surface from one boundary to another. When two boundaries are connected by a cut, they are
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joined into a single boundary component (Fig. 7). Likewise, a self-overlapping surface with a
single boundary component can be cut into multiple smaller surfaces which abut and such that no
surface in the final scene self-overlaps (Fig. 8).

cut
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B

Figure 7: A cut connects two boundaries of a single surface into a single boundary for that surface.
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Figure 8: A cut connects two locations on the same boundary to break the boundary into two
boundaries and the surface into two surfaces.

10 The Crossing-State Equivalence Class Rule

Let X andY be the two surfaces whose boundaries intersect at a crossing. We observe that the
crossing can only be in one of two states. Either surfaceX is above surfaceY or surfaceY is above
surfaceX.

TheoremAll crossings in a crossing-state equivalence class must be in the same state.
Proof We first prove the above theorem for simple surfaces. Because any general 21/2D scene

can be reduced to a simple 21/2D scene, this suffices to prove the theorem in the general case. We
begin by observing the following:

• We observe that for every region there is a total depth ordering of the surfaces which cover
that region.

• The total depth ordering of adjacent regions is identical except for the addition or deletion
(depending on the sign of occlusion) of the surface whose boundary segment separates the
two regions.
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• It follows that the relative depth of two surfaces in adjacent regions remains the same if the
boundary segment which divides the regions belongs to neither surface.

• It follows that the relative depth of two surfaces is constant within a shared superregion.
• The relative depth of the two surfaces whose boundaries intersect at a crossing is the same as

the relative depth of those surfaces in the region they corner.

Consequently, the relative depth ordering of two surfaces at every crossing in a crossing-state equiv-
alence class must be the same.�

For example, in Fig. 6, consider the superregion{m, n} shared by surfaces2 and3. The only
segment interior to the superregion is part of the boundary of surface1. Therefore, the relative
depths of surfaces2 and3 cannot change along that boundary segment.

11 Finding Equivalence Classes

Every crossing is the corner of some shared superregion representing an area of overlap between two
surfaces. A crossing’sneighborsare the two corners of the crossing’s shared superregion which pre-
cede and follow the crossing on the border of the shared superregion. Equivalence classes represent
the reflexive, symmetric, transitive closure of the crossing-state neighbor relation.

Finding the equivalence classes for a legally labeled knot-diagram is fairly straightforward.
Druid first searches for every crossing’s two neighbors. Once the neighbors of all crossings have
been found, equivalence classes can be constructed by computing the reflexive, symmetric, transitive
closure of the neighbor relation.

Every crossing is associated with twounoccludedsegments which cannot be occluded by the
crossing regardless of the crossing-state, and twopotentially occludedsegments, one of which will
be occluded and the other unoccluded depending on the crossing-state (Fig. 9).

In Fig. 10 two boundaries cross atA, the traversal boundaryand thecrossing boundary; this
distinction is arbitrary.Druid searches for one ofA’s two neighbors by moving away fromA along
the potentially occluded segment of the traversal boundary. Before the traversal begins,Druid
initializes thetarget crossing boundary depthwith the crossing boundary’s depth atA. During the
traversal, the target crossing boundary depth is modified as the traversal goes under and comes out
from under surfaces encountered at crossings. The traversal ends when it reaches the neighboring
corner of the shared superregion. The neighboring corner is identified using the following criteria:

1. The boundaries of the same two surfaces that cross atA must also cross at the neighboring
corner.

2. The traversal must arrive at the neighboring corner along one of that corner’s potentially
occluded segments.

3. The crossing boundary must be at the target crossing boundary depth at the neighboring cor-
ner,i.e., it must have the same traversal-adjusted depth as the crossing boundary atA.

The first crossing the traversal finds that satisfies all three criteria is the first neighbor ofA. By
switching the role of traversal boundary and crossing boundary atA, the second neighbor ofA is
found.
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Figure 9: This figure shows a crossing with an unlabeled crossing-state. We observe that every
crossing involves four boundary segments (X0, X1,Y0, andY1). Two segments are alwaysunoccluded
regardless of the crossing-state (X0 andY1) and two segments arepotentially occluded(X1 andY0).
Only one of the two potentially occluded segments is actually occluded at any given time. Which
of the two potentially occluded segments is actually occluded depends on the crossing-state that is
ultimately assigned to the crossing.

A potentially occluded
segments of A

traversal
boundary

crossing
boundary

B

Figure 10: CrossingA (thick square) and its neighbors (thin squares). CrossingB (thick triangle)
and its neighbor (thin triangle). A crossing’s neighbors are the two corners of the crossing’s shared
superregion which precede and follow it on the border. Note that for crossingB, the neighbor that
precedes it is the same as the neighbor that follows it,i.e., it has only one neighbor (thin triangle).
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12 Equivalence Class Independence

An important fact about equivalence class states is that, like crossing states, they are not necessarily
independent in all drawings. For a drawing withE equivalence classes, it may not be true that there
exist 2E equivalence class configurations for the drawing. However, 2E is only an upper bound on
the number of configurations a drawing can assume,i.e., some instantiations of equivalence class
states may be impossible, by which we mean that the corresponding knot-diagrams are not legally
labeled.

Fig. 11 shows a simple scene of three overlapping disks. This particular scene can be repre-
sented using a DAG, which will aid our discussion. Since there are three surfaces, and each surface
is an element of a partially ordered set, there are only six possible DAGs that the surfaces of the
drawing can assume: 1→ 2→ 3, 1→ 3→ 2, 2→ 1→ 3, 2→ 3→ 1, 3→ 1→ 2, and 3→ 2→ 1.

1

2 3

Figure 11: This figure shows a simple scene consisting of three overlapping disks. The surface
relative depth relation for this drawing can be represented as a DAG. There are only six DAGs that
can describe the relative depth relation for this drawing, but there are three equivalence classes,
which naively suggests that there ought to be 23 (or eight) equivalence class instantiations for the
drawing. This discrepancy is due to the fact that two of the equivalence class instantiations represent
illegal labelings.

While the drawing can assume six possible configurations, it has three equivalence classes,
which naively suggests that there are 23 (or eight) configurations. The two extra configurations
correspond to equivalence class state instantiations which form a cycle rather than a DAG. One
cycle is 1→ 2→ 3→ 1. The other cycle is 1→ 3→ 2→ 1.

In Fig. 11, the marked equivalence class cannot be flipped without also flipping one of the other
two equivalence classes so that the knot-diagram has a legal labeling. However, flipping either of
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the other two equivalence classes would constitute a valid solution to the problem, and each would
produce a different result. The two possible results of flipping the marked equivalence class are
shown in the two bottom drawings of Fig. 12. Flipping one of the equivalence classes results in the
partial ordering 3→ 1→ 2, shown at the bottom left of Fig. 12. Flipping the other results in 2→ 3
→ 1, shown at the bottom right.

13 Atomic vs. Nonatomic Crossing-State Equivalence Class Flips

A crossing-state equivalence class flipis the method whichDruid (NEW) uses to perform a crossing
flip interaction. To perform a crossing-state equivalence class flip,Druid (NEW) flips all members
of the clicked crossing’s equivalence class as a unit and then attempts to relabel the knot-diagram.

The crossing-state equivalence class rule might seem to imply that a crossing flip user-interaction
has a uniquely determined effect on the crossing-states of the knot-diagram,i.e., every crossing in
the equivalence class of the clicked crossing must be flipped, and no crossing in any other equiva-
lence class need be flipped. However, as we have shown, it is not always possible to flip a single
equivalence class without flipping other equivalence classes,i.e., the result of flipping a single equiv-
alence class can, in some cases, result in an illegal labeling. In such cases, the user’s ultimate intent
must be to flip more than one equivalence class. Unfortunately, inferring which equivalence classes
must be flipped in order to achieve the user’s intent is impossible since there is no way to resolve
the inherent ambiguity.

An atomiccrossing-state equivalence class flip is one that can be performed independently of
all other equivalence class flips in the drawing. Such a flip corresponds to anatomicchange in a
21/2D scene. If a flip results in an illegal labeling, then it can only be performed by flipping other
equivalence classes as well. For this reason, we call such a flipnonatomic. Nonatomic flips can
be interpreted in multiple ways,i.e., there are multiple legal labelings consistent with a nonatomic
flip. This inherent ambiguity makes it impossible forDruid to deduce the user’s intent,i.e., Druid
cannot know which of the multiple possibilities the user actually desires when the user performs a
nonatomic flip.

We can avoid the ambiguity inherent in nonatomic flips by exploiting the fact that any nonatomic
flip can be decomposed into a sequence of atomic flips, each of which is unambiguous,i.e., there
is only one way to interpret the user’s intent.Druid (NEW) forces the user to perform a nonatomic
flip by performing a sequence of atomic flips instead. Fig. 12 shows how this is done. An attempt
to flip the marked equivalence class in the top drawing would be nonatomic, since the result cannot
be legally labeled. There are two possible intended outcomes, each of which requires flipping one
of the other equivalence classes in the drawing while leaving the third equivalence class unflipped.
The two possible outcomes are shown at the bottom of the figure.Druid cannot know which out-
come actually corresponds to the user’s intent, and thus cannot perform the flip specified by the user
without also producing a possibly unintended result. However, each outcome can be accomplished
by a sequence of two atomic flips. The first atomic flip is shown in the smaller intermediate draw-
ings. The second atomic flip corresponds to the equivalence class the user originally intended to
flip, which will have become atomic as a result of the intermediate flip.

When the user attempts to perform a nonatomic flip,Druid (NEW) does not perform the flip, but
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first possible intended result second possible intended result

intermediate drawingintermediate drawing

1

2 3

atomic flip of circlesatomic flip of circles

nonatomic flip of circles nonatomic flip of circles

atomic flip of squares atomic flip of triangles

Figure 12: This figure shows the drawing from Fig. 11 at top, with a nonatomic equivalence class
marked with circles. Flipping this equivalence class is a nonatomic flip since the result cannot be
labeled without flipping other equivalence classes as well. The user’s intent when attempting to flip
this equivalence class must correspond to one of the two possible results shown at the bottom, but
there is no way forDruid to tell which result is actually intended. However, each of the two results
can be decomposed into a sequence of two atomic flips, the first of which are shown in the small
intermediate drawings, and the second of which are shown below. The intermediate atomic flip will
convert the desired nonatomic flip into an atomic flip, thus resolving the ambiguity.
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rather helps the user choose a sequence of atomic flips which will yield the desired result. This is
accomplished by displaying other equivalence classes which may need to be flipped as blinking on
and off.

Although Druid (NEW) currently employs the above method of resolving the ambiguity asso-
ciated with nonatomic flips, there are alternate methods which could be used. The following lists
some alternate methods for handling nonatomic flips:

1. Arbitrarily choose from among the various legal labelings consistent with the flip.
2. Allow the user to fix the states of some equivalence classes so that they may not be flipped.
3. Discover all possible results. Present them to the user in a table and ask the user to choose

among them.

An interesting question is which of the proposed methods for handling nonatomic flips is best
from the point of view of good user interface design. Our current method of prohibiting nonatomic
flips is not necessarily the best approach. IfDruid used the first method listed above, it would
perform a nonatomic flip by arbitrarily choosing one of the various legal labelings that result from
propagating the constraint. As a result, all clicks on a crossing would yield a change to the drawing,
which is desirable since the user’s intent clearly requires some kind of change to occur. This method
might reduce the cognitive burden on the user since he would not have to manually navigate a
sequence of atomic flips to achieve a nonatomic flip. On the other hand, this method might increase
the cognitive burden on the user instead of decreasing it; ifDruid’s arbitrary result did not match
the user’s intent, then he would have to correctDruid’s mistake. It is not clear how such corrections
would be made. Without devising a method for the user to specify corrections to an incorrect
nonatomic flip, this method cannot be used.

A second possibility is forDruid to choose arbitrarily, but to do so subject to a set of user-
specified constraints. This method would require a new user-interaction in which the user con-
strains some equivalence classes to remain in their present state. Initially the user would attempt a
nonatomic flip without any constraints,i.e., by using the first method described above. IfDruid’s
arbitrary choice did not correspond to the user’s intent, he would then undo the flip, reverting to the
previous labeling, constrain some equivalence classes to their current state, and try the flip again.

The third method listed above for handling nonatomic flips, showing all possible solutions and
letting the user choose his preferred result, presents the wrong affordances (see Wiley and Williams
[7]). We believe thatDruid should present a legal labeling of a 21/2D scene to the user, not a list of
options from which to select. However, this method could be used to remedy the problem posed by
the potential ambiguity of nonatomic flips. A more serious problem with this method is that there
is no obvious bound on the number of legal labelings that might result from a nonatomic flip. In
most cases, there will probably be relatively few options. However, there is no guarantee thatDruid
would not have to present a large number of legal labelings from which the user would be required
to choose.

In summary, to the ambiguity of nonatomic flips and the potentially large number of possible
solutions that might result,Druid presently does not permit nonatomic flips. Instead, it forces
the user to perform a series of atomic flips. For this reason, in the remainder of this discussion,
references to an equivalence class flip will assume that the flip in question is atomic.
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14 Relabeling Without Search

In the previous section, we showed that the crossing-states of the new labeling following an atomic
flip are uniquely determined, and thus no search is necessary to discover the new crossing-states.
It might seem necessary to perform a search to find the new boundary segment depths for the la-
beled knot-diagram, but this is not so. With two basic assumptions, boundary segment depths
can be deduced directly from the crossing-states. The first assumption is that the labeled knot-
diagram isnormalized, i.e., that the depth of the shallowest boundary segment in the entire labeled
knot-diagram is exactly zero. The second assumption is that the labeled knot-diagram isvertically
compact, i.e., that the drawing is compacted in the depth dimension as much as possible subject to
the constraints of the labeling scheme. With these two assumptions, boundary segment depths are
uniquely determined by the crossing-states.

It is preferable to confine the relabeling of boundary segment depths to an area local to the
flipped equivalence class when the user flips a crossing because such behavior will scale better with
the complexity of the drawing than relabeling all boundary segment depths in the drawing. Thus,
Druid propagates depth-changes through the knot-diagram away from the flipped crossings rather
than globally relabeling all boundary segment depths.

When a crossing is flipped, the depths of its two potentially occluded segments will always
change and the depths of its two unoccluded segments will never change (see Fig. 9). Since the
depths of the unoccluded segments do not change, the new depths for the potentially occluded seg-
ments can be deduced directly by applying the labeling scheme to the flipped crossing-state and the
two unoccluded boundary segment depths. After deducing the new depth for a boundary segment,
that boundary segment’s depth is fixed and may not be changed again during the propagation pro-
cess. We say that such a boundary segment isdepth-constrained. This constraint guarantees that
the depth propagation process always converges.

The relabeling method processes crossings in a FIFO queue. This queue is initially seeded with
all crossings in the flipped equivalence class. For each crossing in the queue,Druid assigns new
boundary segment depths to some of its four boundary segments in order to make the crossing legal.
When members of the equivalence class are retrieved from the queue, new boundary segment depths
are always assigned to the potentially occluded segments and never to the unoccluded segments,
as described above. When crossings are retrieved from the queue that are not a member of the
equivalence class, their boundary segment depths must be reassigned so that they are consistent
with a labeling scheme.

When the relabeling process assigns a new depth to a boundary segment, the propagation process
must propagate along that boundary segment to the next crossing. Thus, the next crossing is added
to the queue. The effect of processing the propagation in a FIFO queue is that changes occur near all
members of the equivalence class equally early in the propagation process and then expand outward.

As the propagation traverses boundaries and reaches new crossings, some of the four bound-
ary segments incident at those crossings will be depth-constrained, as described above. The one
exception to this rule will be the members of the equivalence class. Since they were not added to
the queue by the propagation process, but instead were directly inserted into the queue as a result
of the equivalence class flip, they will not have any depth-constrained boundary segments. How-
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ever, as described above, their new boundary segment depths will be uniquely determined. For all
other crossings, the effect of the propagation process is that at least one boundary segment will
be depth-constrained. The unconstrained depths of a crossing reached by the propagation process
are uniquely determined by the labeling scheme, the crossing’s state, and the depths of the depth-
constrained boundary segment depths.

If at any time the propagation process reaches a crossing that cannot be legally relabeled without
changing the depth of some depth-constrained segment incident at the crossing, then the propagation
process must be abandoned because the user’s desired flip cannot be performed. Such a situation
corresponds to an attempted nonatomic flip since continuing the propagation process would require
that crossings which are not members of the user-flipped equivalence class be flipped.

15 Results

To perform a crossing flip,Druid (OLD) would perform a search to find a new labeling. In contrast,
Druid (NEW) flips the equivalence class and deduces the boundary segment depths that result from
the flip. Druid (NEW)’s method is considerably faster thanDruid (OLD)’s method.

Fig. 13 shows a drawing of low complexity before an equivalence class flip is performed (top)
and after two different equivalence classes have been flipped (bottom-left and bottom-right). The
equivalence class that has been flipped in each case is marked with circles. The flip at bottom-left
involves a fairly large equivalence class, consisting of sixteen crossings, while the flip at bottom-
right involves a fairly small equivalence class, consisting of only four crossings. Figs. 14 and 15
show plots of the relabeling running times when each method is applied to each of the two flips
illustrated in Fig. 13. Tests were performed on a 1.6 GHz G5 PowerMac.

Based on the plots shown in Figs. 14 and 15, we observe thatDruid (NEW) performs well
for both of the flips performed on this drawing. Average turnaround times in both cases were
approximately 0.06 seconds, which is effectively instantaneous from the user’s perspective.

We observe that the benefit of exploiting equivalence classes is significantly greater when ap-
plied to flips of large equivalence classes than when applied to flips of small equivalence classes.
The mean running time plot in Fig. 14 shows thatDruid (OLD) takes almost 4000 times as long
asDruid (NEW) to complete the flip shown in the lower-left of Fig. 13. The cost forDruid (OLD)
would have been even greater if the search had not been terminated after 120 seconds. Perhaps more
typically, the mean running time plot in Fig. 15 shows thatDruid (OLD) takes only 12 times as long
to complete asDruid (NEW) for the flip shown in the lower-right. The equivalence class employed
in the first flip contains only four times as many crossings as the equivalence class employed in the
second flip (sixteen crossings vs. four crossings), yet the benefit of exploiting equivalence classes in
the first flip is more than 300 times greater than in the second flip. Thus, the benefit of using equiv-
alence classes to relabel scales much faster than linear with respect to the size of the equivalence
classes.

In drawings possessing mirror and/or rotational symmetry, distinct equivalence classes will of-
ten correspond to topologically identical elements of the drawing,i.e., distinct equivalence classes
may represent similar elements that occur in multiple places. For example, in Fig. 13, the two equiv-
alence classes formed by the overlap of the two outer “fingers” and the bottom ellipse are related
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Figure 13: These figures show equivalence class flips for two different equivalence classes of the
same drawing. The original drawing is shown at top. The results of performing the two equivalence
class flips are shown at bottom with the members of the flipped equivalence classes marked with
circles. In the lower-left figure, a fairly large equivalence class has been flipped. The equivalence
class for the flipped shared superegion has sixteen crossings. In the lower-right figure, a fairly small
equivalence class has been flipped.
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Figure 14: Running times for the two relabeling methods applied to the first flip shown in Fig. 13.
Note that time is shown using a logarithmic scale.
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Figure 15: Running times for the two relabeling methods applied to the second flip shown in Fig.
13.
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by a mirror symmetry. Fig. 16 shows a fairly complex drawing that contains numerous symmetries
which result in numerous topologically identical equivalence classes. One set of topologically iden-
tical equivalence classes consists of the eight equivalence classes that have been flipped in the right
figure. In order to measure the running times in such cases, we performed each of the eight flips
illustrated in the right drawing individually and then combined the data to produce the plot shown
in Fig. 17.

Figure 16: The right figure shows eight topologically identical equivalence class flips performed on
the left figure, each marked with circles. The running time tests discussed in the text measure the
average time required to perform a single equivalence class flip.

Fig. 17 shows the benefit of exploiting equivalence classes on the drawing shown in Fig. 16. We
observe thatDruid (OLD) does not exhibit acceptable turnaround times. We terminated the search
after 120 seconds, and in many cases, as shown in the plot, the search failed to find any legal labeling
within the alloted time. In contrast,Druid (NEW) performed quite well with mean turnaround times
about 500 times faster thanDruid (OLD) .
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Figure 17: Running times for the two relabeling methods applied to each of the topologically iden-
tical flips shown in Fig. 16. The data across all eight possible flips have been combined in this
plot.
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16 Future Work: Using Crossing-State Equivalence Classes For La-
beling

This paper has focused on how the crossing-state equivalence class rule can be used to relabel a
labeled knot-diagram. However, there are occasions when an initial labeling must be found for a
knot-diagram. Like relabeling,labelingcan also potentially benefit from the constraint represented
by crossing-state equivalence classes.Druid (NEW) does not take advantage of these constraints
when labeling because we do not presently have a robust method for finding the equivalence classes
of an unlabeled knot-diagram. However, ifDruid knew the equivalence classes in advance, and if
each equivalence class was initialized to an internally consistent state (all crossings in the equiva-
lence class possess the same state), then there is a clear method for exploiting them during the search
for a legal labeling that would vastly decrease the search space. Labeling would be performed using
branch-and-bound search with constraint propagation. The proposed method would use equivalence
classes as the basis for a new form of constraint propagation. Whenever the search expands a sub-
tree that requires flipping a crossing, the proposed method of search would simultaneously flip all
crossings in the associated equivalence class, thus respecting the crossing-state equivalence class
rule.

This method for optimizing the search would vastly decrease the search space; the use of
crossing-state equivalence classes reduces the search space from 2C to 2E for a drawing withC
crossings andE equivalence classes. This is a significant reduction in the search space because
there are always far fewer equivalence classes of a drawing than there are crossings. Indeed,E can
be at most sizeC/2 since equivalence classes always come in even sizes. Consequently, even in the
worst case 2E = 2C/2.

Consider Fig. 13. There are forty crossings in the figure. Thus, the search space for the search
method currently used byDruid would have size 240. The proposed method would exploit the fact
that there are only seven equivalence classes in the figure. Thus, it would only search a space of size
27.

Since a search is performed on an unlabeled drawing, the method for finding the equivalence
classes must be different than the method described earlier for labeled drawings. Since that method
makes use of the boundary segment depths, it cannot be applied to an unlabeled figure.

In summary, at the present time, we do not have a proven method for finding equivalence classes
on unlabeled figures. Future work onDruid will include devising a robust and proven method for
accomplishing this task.

17 Conclusions

In earlier work, we developed a system calledDruid which permits the construction of interwoven
21/2D scenes. The newDruid system exploits a topological constraint on 21/2D scenes which we call
the crossing-state equivalence class rule, and consequently can relabel knot-diagrams much more
rapidly than the old system. This vastly extends the complexity of drawings that users ofDruid can
construct. In our earlier work [7], we developed an innovative new drawing program. The original
contributions of that work were:
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• Use of labeled knot-diagrams as the basis for a more general drawing tool capable of repre-
senting drawings of interwoven surfaces

• Development of a branch and bound search method for efficiently finding minimum-difference
labelings with respect to the labeling preceding a user action

The contributions new to the work described in this paper are as follows:

• Discovery of a topological property of 21/2D scenes,i.e., the crossing-state equivalence class
rule

• Development of a method for finding the crossing-state equivalence classes of a labeled knot-
diagram

• Development of a method that uses the crossing-state equivalence class rule to relabel a la-
beled knot-diagram without the need for additional search, thus vastly decreasing the time
required to perform a crossing flip user interaction.
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