
Representation of Interwoven Surfaces in 21
2D Drawing

Keith Wiley Lance R. Williams

Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

September 9, 2005

Abstract

The state-of-the-art in computer drawing programs is based on a number of concepts that
are over two decades old. One such concept is the use of layers for ordering the surfaces in
a 21

2D drawing from top to bottom. A 212D drawing is a drawing that depicts surfaces in a
fundamentally two-dimensional way, but also represents the relative depths of those surfaces in
the third dimension. Unfortunately, the current approach based on layers unnecessarily imposes
a partial ordering on the depths of the surfaces and prevents the user from creating a large class
of potential drawings,e.g., of Celtic knots and interwoven surfaces.

In this paper we describe a novel approach which only requires local depth ordering of
segments of the boundaries of surfaces in a drawing rather than a global depth relation between
entire surfaces. Our program provides an intuitive user interface with a fast learning curve that
allows a novice to create complex drawings of interwoven surfaces that would be extremely
difficult and time-consuming to create with standard drawing programs.

1

1 Introduction

Drawing programs originated with Sutherland’s seminal PhD thesis in 1963, in which many rec-
ognizable components of modern drawing programs were already present (see Sutherland [18]).
Since then, a number of refinements have been made to the general design of drawing programs,
aided primarily by hardware innovations such as the mouse. In 1984, Apple releasedLisaDraw
3.0 (see Craig [2]), which despite its age, is effectively a modern drawing program. For the last
twenty years, research on drawing programs has focused on refinements to the existing approach
rather than the development of entirely new approaches. For example,CorelDRAW 12, a profes-
sional drawing program, boasts features such as aSmart Drawing tool, which allows a user to
freehand draw approximate shapes that are recognized and fitted to stock shapes such as ellipses,
andDynamic Guides, which are temporary guides for aligning graphic objects to one another (see
Corel [1]). These changes are incremental extensions of the standard approach and do not represent
quantum leaps in capability.

One function of a drawing program is to allow the creation and manipulation of drawings of
overlapping surfaces, which we simply call21

2D scenes. A 21
2D scene is a scene of surfaces that

is fundamentally two-dimensional, but which also represents the relative depths of those surfaces
in the third dimension. Using existing programs, a drawing can easily be created in which multiple
surfaces overlap in varioussubregions(a contiguous area of a surface). When multiple surfaces
overlap, the program must have a means of representing which surface is on top for each overlapping
pair of subregions. Existing drawing programs solve this problem by representing drawings as a set
of distinct layers where each surface resides in a single layer. For any given pair of surfaces, the one
that resides in the upper (or shallower) layer is assigned a smaller depth index and appears above
wherever those two surfaces overlap. Consequently, the use of layers imposes a partial ordering, or
a directed acyclic graph (DAG), on the surfaces such that no subset of surfaces can interweave (Fig.
1). This restriction precludes many common drawings which a user may wish to construct (Fig. 2).
Because such programs do not span the full space of possible 21

2D scenes, they therefore impose
limitations on the drawings that a user can create.

Our research uses a more general representation as the basis for a more powerful drawing tool,
calledDruid. Druid eliminates the assumption that surfaces cannot interweave. It therefore spans
a larger space of 212D scenes by using a representation that makes weaker assumptions about the
drawing. This generality makesDruid a more versatile drawing tool.

2 Drawing Program User-Interactions

Many drawing programs provide tools for creating and editing splines. One such program,Mac-
PowerUser’s iDraw, [8], bases all objects on splines. Rectangles, polygons, even text are all repre-
sented using splines. This provides a consistent interface for editing the various kinds of objects in
iDraw. Similarly, Druid is based entirely on splines. Like [7] and [17],Druid uses B-splines. We
chose to use B-splines instead of Bezier splines because they are simpler to implement. All bound-
aries are B-splines, including shapes that may be approximated by splines, such as hand-drawn
curves, rectangles, and text. The assumption that all boundaries are splines lends a uniformity to a

2

A

B C

D
E

F

F

E

D

B C

A

Figure 1: The classic approach to representing relative surface depths is to assign the surfaces to
distinct layers. This implicitly imposes a DAG on the surfaces such that no subset of surfaces can
interweave because this would require a cycle in the graph.

Figure 2:Druid permits the construction of drawings of interwoven surfaces, such as those shown
here. a) Olympic rings, b) Star of David, c) Square knot

3

drawing program’s interface that makes it easier for a user to understand, while simulaneously sim-
plifying the programmer’s job. There are a number of user interactions that a spline-based drawing
program should permit. These interactions include:

• Create a new boundary

• Delete a boundary

• Smoothly reshape a boundary

• Drag a surface (drag all of its boundaries)

• Add or remove spline control points

• Increase or decrease spline degree

• Reverse a boundary’ssign of occlusion(discussed later)

• Reverse the depth ordering of two overlapping surface subregions

The interface of a program should not only provide a method for each of these interactions;
these methods must beuser-friendly, that is, simple to understand and easy to use. Unfortunately,
the only previous attempt to circumvent the partial ordering limitation,MediaChance’s Real-Draw
Pro 3, forces the user to use a complex and confusing interface.

2.1 Software Affordances

A software application’s interface possesses a specific set ofaffordances. The term affordance is
debated at great length in the literature. There are multiple interpretations for this term and how
it should be applied to design (see McGrenere [10]). The term was originally coined by Gibson
[3], who defined the affordances of an object as the action possibilities of that object relative to a
particular actor. Gibson claimed that affordances are independent of the actor’s past experience and
accumulated knowledge, but are dependent on the specific actor,e.g., a table affords sitting for a cat,
but not for an elephant. Norman adopted the same term in [13, 14], but uses it slightly differently.
According to Norman, affordances are only those actions that are perceived, not possible actions that
are not perceived. Additionally, perceived actions that are not actually possible are still affordances
according to Norman. He defines affordances as the clues an object offers about how it can be used,
and believes affordances can be dependent on an actor’s experience. In this way different people
might perceive different affordances for the same object based on their individual past experiences.

There is a general agreement that affordances are difficult to define with respect to software.
This is because affordances are usually defined with respect to physical qualities of material objects.
With this difficulty in mind, we define the affordances of a user interface as the ways in which the
user can interact with the screen’s imagery, since for the most part existing interfaces present a
single two dimensional image to the user with which to interact. This interaction usually involves a
keyboard and a mouse. In the case of drawing programs, use of the keyboard is generally minimized

4

because this violates the notion ofdirect manipulation interfaces(discussed below). Therefore, the
affordances of drawing programs mainly consist of clicking on and dragging various features of the
visual presentation with a mouse and associated cursor. In the case of drawing programs, this means
clicking and dragging on the control points of the various splines in the drawing.

In our design forDruid, we attempt to model our interface on a real physical system and then
to offer the affordances characteristic of that system. The physical system depicted by a drawing
program is a 212D scene which the user can manipulate in ways that are appropriate for such scenes,
e.g., altering the shape and placement of surfaces, and altering the relative depths of the surfaces or
their subregions.

Real physical surfaces possess certain natural affordances. They can be stretched, translated,
cut into smaller surfaces, have holes cut in them, and lifted above or pushed beneath one another
in potentially interwoven arrangements. They can also be colored or be made transparent. In some
cases they can be glued to other surfaces to form larger surfaces. We believe that a set of affordances
isomorphic to those of real surfaces should be provided by an effective drawing program. This
amounts to a visual analogy between the program’s usage and the thing depicted, in our case, 21

2D
scenes. One example is translating a surface by “grabbing” it with a hand-shaped cursor and then
dragging it in the desired direction. This is directly analogous to how a graphic designer might
move pieces of paper around on a drafting board. Unfortunately, many drawing programs do not
offer such a set of isomorphic affordances. It is our belief that while some programs, such as
Real-Draw, attempt to solve the problems posed in this research, they do so through interfaces
with unnatural affordances which make the programs complicated and non-intuitive to use.Druid’s
interface possesses affordances which are isomorphic to the affordances of the physical surfaces
which are depicted. As such, it is simpler to use, while at the same time, is more powerful than
existing drawing programs in its capability to create and edit complex 21

2D scenes. Demonstrating
thatDruid’s affordances are more natural and therefore superior to the affordances of other drawing
programs is a major focus of this research.

2.2 Direct Manipulation Interfaces

A concept that is closely related to affordances isdirect manipulation interfaces(see Norman and
Draper [15]). A direct manipulation interface is an interface which allows the user to interact with
the depicted object using the most direct method possible given the I/O devices that are available.
The least direct interface for drawings would be one in which the user types textual commands
to manipulate a drawing. A more direct interface would use a light-pen or touch-sensitive screen,
analogous to real pencil and paper. This is how Sutherland implemented Sketchpad [18]. Today,
most computers use a mouse interface to move a cursor.

Given this limitation, a direct manipulation device is an interface in which mouse and cursor
movements are used to directly manipulate the elements of a drawing, as opposed to using a set of
menus, buttons, and sliders. The hand-dragging example, mentioned previously, is a good example
of a direct manipulation interface. Direct manipulation interfaces are popular because they minimize
the user’s effort by allowing him to interact directly with the drawing being edited rather than
through an intermediate interface. The benefits of direct manipulation interfaces explain why most
drawing programs rely heavily on a mouse and only weakly on a keyboard.

5

Direct manipulation interfaces have been used in drawing programs in the past, such as the
original drawing program,Sketchpad. The basic premise of a drawing program as a tool which
shows the drawing as it is being constructed may seem obvious now, but it originated with the
WYSIWYG 1 concept that came out of Xerox PARC in the 1970s (see Myers [12]). Raisamo and
Raiha applied the idea of direct manipulation interfaces to the problem of aligning objects in a
drawing [16]. They demonstrated that such an approach provided significant improvements over
established methods such as alignment commands and gravity active points.

There is a close correspondence between direct manipulation interfaces and good affordances
because direct manipulation interfaces create a one-to-one correspondence between edit-distances
and distances in the representation space of 21

2D scenes. Stated differently, the user interface is
isomorphic to the 212D scene the program represents and manipulates. By constrast, a keyboard and
command-line interface for a drawing program generally requires numerous keystrokes, each prone
to error, in order to accomplish very simple tasks in terms of representation distance.

We have attempted to incorporate the notions of good affordances and direct manipulation in-
terfaces in the design ofDruid. Most user-interactions are performed by interacting directly with
the drawing in ways that are intended to make sense even to a novice user.

2.3 Contstraint-based Interfaces

Constraint-based interfaces have recently become popular in drawing programs. The most common
application of constraints in drawing programs is gravity-snapping, where the cursor (and any object
linked to the cursor) snaps to grid points for the purpose of keeping objects aligned. A slightly
different approach snaps objects to other objects rather than an underlying grid (see Gleicher [4]).
Druid’s operation is also based on constraints. First,Druid constrains the user to constructing
topologically valid 21

2D scenes. Second, a user’s interaction with a drawing takes the form of a
constraint, indicating the user’s intent, that guides the search process for a new legal labeling. This
search is described in later sections.

The correspondence we describe between a 21
2D scene and its depiction in a drawing is not the

first attempt to design a drawing tool based on a physical analogy. Gleicher [5] describes a method
for manipulating boundaries in a drawing by applying physical forces that push and pull against the
boundaries. Treating drawings like physical systems is useful because it allows the user to apply
intuitive understanding of physics and topology to the process of creating a drawing.

3 Spoofs

With considerable effort, itis possible to create images with existing drawing programs that depict
interwoven surfaces. However, the underlying drawing representation in such cases is not, and
cannot be, truly interwoven. This is accomplished in existing drawing programs by constructing
one set of surfaces which has the appearance of a completely different set of surfaces. We call this
sort of illusion aspoof (Figs. 3 and 4). Spoofs represent non-generic configurations, where various
elements of a drawing are precisely aligned in order to create the illusion of interwoven surfaces.

1“what you see is what you get”

6

(2) Copy just the right ring in
 the overlapping region

(3) Paste

(1) Start with the right
 ring on the bottom

(4) Place the spoof precisely
 over its original position,
 on top of both rings

Figure 3: A spoof is a process by which the illusion of interwoven surfaces can be constructed in a
layered system. The underyling representation does not match the final rendered image. See also
Fig. 4.

Figure 4: The figure on the left shows the DAG for the three components of the spoof in Fig.
3. While the illusion of interwoven surface has been created, the underlying representation is still a
partial ordering, as required by existing drawing programs. The figure on the right shows an oblique
view of the canvas, with the layers vertically spread apart to illustrate the spoof’s construction.

7

One might ask, if spoofs are a sufficient method for creating rendered images of interwoven
surfaces, what difference does it make if the underlying representation of the drawing does not cor-
respond to the 212D scene which is perceived? Our answer lies in an analysis not of thecapability
of spoofs (spoofs are fully capable of solving the problem of creating images which will be per-
ceived as interwoven surfaces), but in the unnaturalness and labor intensiveness of spoofs. Spoofs
are tedious to construct, requiring many steps to be performed with precision. Furthermore, they
are brittle because once a spoof has been constructed, any alterations to the drawing will require the
spoof to be redone.

4 Stages in Drawing Program Evolution

Druid represents a new kind of drawing program that is more powerful than existing programs.
In this section we describe a progression of drawing program functionalities. This progression
classifies drawing representations in three stages of increasing generality:

1. Drawing representations which assume aglobalDAG on the surfaces

2. Drawing representations which allow different DAG’s in different regions of the canvas

3. Labeled knot-diagrambased representations

Stage 1 consists of programs based on representations that can be described as layers of constant
depth, and includes virtually all existing drawing programs. Stage 2 consists of programs based on
drawing representations which still rely on a partial ordering of the surfaces, but which allow the
user to define special regions of the canvas where the partial ordering will differ from the default
DAG. To our knowledge, the only program in this category isMediaChance’s Real-Draw Pro-3(see
Voska [19]). Real-Drawstarts out with a basic layered representation, but then provides a special
tool called thepush-back. This tool lets the user define a region of the canvas where the partial
ordering can be locally altered. The layer that resides at depth zero within the selected region can be
pushed down to an arbitrary depth, placing it beneath some or all of the (previously) deeper layers.
Although the depth ordering of surfaces below the surface that is at depth zero by default cannot be
altered, this operation is sufficient to create most kinds of interwoven images (Fig. 5).

Stage 3 consists of drawing programs based on representations that do not rely on any notion of
a partial ordering of the surfaces. Such a representation contains only localized information about
the depths of various subregions of the surfaces. We do not know ifDruid’s representation is the
best representation of this type, but it has been proven thatDruid’s representation is sufficient to
represent the full space of 21

2D scenes (see Williams [21]).
One might ask what advantages Stage 3 drawing programs have relative to Stage 2 drawing

programs? One problem is thatReal-Draw’sapproach is merely an incremental improvement over
the Stage 1 representation. The result is that the actual interface for manipulating surfaces inReal-
Draw is awkward and counterintuitive. It relies on the use of the push-back object, which both
defines the region in which layers are to be reordered and provides the interface for manipulating
the ordering. Because the push-back object does not reflect the way humans perceive and reason

8

Figure 5: Real-Drawprovides apush-backtool, which allows the user to define a region of the
canvas and then manipulate the ordering of the layers within that region. The sequence shown here
illustrates how this is accomplished, in the order left to right, top to bottom.

9

about surfaces, it is not a natural representation for overlapping surfaces,i.e., it does not possess
natural affordances (affordances that are isomorphic between the drawing and the surfaces being
depicted).

Additionally, because the push-back object is a drawing object on the canvas, it must be kept
properly aligned with the surfaces it is associated with. If the user adjusts the locations of surfaces
that are associated with a push-back, the user must also adjust the push-back object to make sure it
still encompasses the relevant region of the canvas. Furthermore, the introduction of new surfaces
into an existing push-back object’s region requires that the old push-back be replaced. We believe
that a labeled knot-diagram-based representation, offering better affordances, and which makes
fewer demands on the user, is a better solution.

More significantly,Real-Drawdoes not span the space of 21
2D scenes. There are two situations

where this can arise. The first occurs when the user attempts to create a surface that overlaps
itself. Each surface inReal-Drawis represented by a single label in the global surface DAG. A
push-back only allows the reordering of layers based on labels in the DAG. Consequently, two
overlapping subregions of the same surface will have the same global label, and that label will
only occur once in the DAG. Since the label only occurs once in the DAG, and since the push-
back tool allows manipulations of surface labels, not actual subregions, there is no way to represent
a self-overlapping surface. The primary cause of this problem is that the push-back presents an
interface for editing local DAG’s, but the surface labels remain properties of a global DAG. This is
a fundamental deficiency inReal-Draw’srepresentation (Fig. 6).

An additional problem withReal-Drawis that since the push-back object only allows the depth
zero object to be pushed down, there is no way to manipulate the ordering of deeper layers. If
surfaces are opaque this does not matter since only the depth zero surface will be visible. However,
if surfaces are transparent, then the ordering of deeper layers might affect (depending on the exact
transparency model used) the appearance of a region where multiple surfaces overlap.

In theory, the push-back could be expanded in its power to allow a more comprehensive ma-
nipulation of the surface depths. However, the more serious problem of self-overlapping surfaces
would remain unaddressed.

Druid’s Stage 3 approach is more powerful in both of these regards since it naturally represents
both self-overlapping surfaces and transparent surfaces with ease.

5 Labeling Scheme

In order to build a Stage 3 drawing tool, it is necessary to develop a fundamentally new approach for
the representation of drawings. Existing drawing programs represent a drawing as a set of regions
which comprise the interiors of a set of surfaces. In constrast, a Stage 3 program represents the
boundariesof surfaces and is not concerned with the regions interior to a surface until the final
rendering step. The reason for this focus on boundaries rather than interiors is that depth changes
always occur at surface boundaries, not interiors.

Our system,Druid, represents a 212D scene as alabeled knot-diagram(see Williams [21]). A
knot-diagramis a projection of a set of closed curves onto a plane and indicates which curve is
above wherever two curves intersect (Fig. 7). Williams extended ordinary knot-diagrams to include

10

Figure 6:Real-Drawcannot properly represent self-overlapping surfaces. Since a surface has only
one label in the surface layer list, there is no way to manipulate the depth ordering of multiple sub-
regions belonging to a single surface. For this reason,Real-Drawcannot represent self-overlapping
surfaces. The overlapping region is rendered with empty space, as shown here.

11

a sign of occlusionfor every boundary and adepth indexfor every boundary segment (Fig. 8). The
sign of occlusion is illustrated with an arrow and denotes a bounded surface to the right with respect
to a traversal along the boundary in the arrow’s direction.

This paper describes the algorithmDruid uses to assign a labeling to a knot-diagram. The pro-
cess of assigning a labeling is similar to Huffman’sscene-labeling(see [6]), in which he developed
a system for labeling the edges of a scene of stacked blocks. InDruid’s case, the labeling consists
of signs-of-occlusion, crossing-states, and segment depth indices. Thelabeling schemeis a set of
local constraints on the relative depths of the four boundary segments that meet at a crossing (Fig.
9). If every crossing in a labeled knot-diagram satisfies the labeling scheme, the labeling is alegal
labeling and accurately represents a scene of topologically valid surfaces. Legal labelings can be
translated into images (the process for which is described later) in which the interiors of surfaces
are filled with solid color.

Figure 7: Aknot-diagramis a projection of a set of closed curves onto a plane together with indica-
tions which show which curve is on top at every crossing.

6 Demonstration ofDruid

Fig. 10 demonstrates howDruid is used.Druid uses closed B-splines to represent the boundaries of
surfaces. Spline control points are defined in either a clockwise order to createsolids(A - F) or in a
counter-clockwise order to createholes(H). Crossings can be clicked to reverse the relative depths
of overlapping subregions (G andI). We call this interaction aflip.

Note that there is a natural logic to the operations in Fig. 10. For example, to alter the detpth or-
dering of various overlapping subregions, the user merely clicks on a crossing to invert its crossing-
state.Druid then does all of the computation necessary to keep the labeling legal. This computation

12

1

1

0

0

1

1

0

0

1

1

0

0

0

1 0

1
0

1

0

1

0

1

0
0

1

0

0

1

0

1

0

00
1

0
1

0 0

1

0

1

0
1

01

0

1

0
0

1

0

1

00

1

Figure 8: Alabeled knot-diagram(see Williams [21]) is a knot-diagram with a sign of occlusion for
every boundary and a depth index for every boundary segment. Arrows show the signs of occlusion
for the boundaries, always denoting a surface bounded to the right of a boundary with respect to
travel along the boundary in the direction of the arrow. Some depth indices of depth zero have been
omitted for clarity.

x

x

y ≥ x y + 1

Figure 9: Thelabeling scheme(see Williams [21]) is a simple set of constraints on the depths
of the four boundary segments that meet at a crossing. If every crossing in a labeling honors the
labeling scheme then the labeling is alegal labelingand can be rendered.x is the depth of the upper
boundary. The upper boundary must have the same depth on both sides of the crossing.y is the
depth of the unoccluded half of the lower boundary. The lower boundary must have a depth ofy + 1
in the occluded region (shaded), as defined by the upper boundary’s sign of occlusion. Finally, the
lower boundary must reside beneath the upper boundary. Thus,y must be greater than or equal tox.

13

consists of searching the space of legal labelings for a labeling which satisfies the constraint repre-
sented by the new crossing state. Compare this mode of interaction with either the spoof approach
associated with Stage 1 drawing programs or with the push-back approach associated with Stage
2 drawing programs,i.e., Real-Draw. Construction of a spoof that appears likeI would be quite
tedious. Worse yet, to invert the relative depth ordering within a subregion, the spoof would have to
be completely rebuilt. If one were to useReal-Draw, push-back objects would have to be explicitly
created for each desired subregion and would have to be maintained if the user were to move the
various surfaces around.

7 Labeled Knot-Diagram Spaces

Druid must search through a space of possible labeling assignments in order to find a legal labeling
when a user-initiated change occurs. In this section we describe this search space.

Given an unlabeled drawing, there exists a set of possible legal labelings that can be assigned
to that drawing. When the user causes a change to the drawing, the drawing becomes illegal in a
localized area as a result of the change. The task forDruid is to fix the illegal part of the drawing
by searching the labeling space for a new legal labeling.

The organization of the search process is motivated by the primary goal of finding theminimum-
difference labelingwith respect to the labeling prior to the change. The user communicates his intent
by specifying a single constraint on the new labeling.Druid then deduces the remaining constraints
by searching for a legal labeling that satifies the user’s explicit constraint. In this way,Druid deduces
the user’s intentions automatically, thereby minimizing the user’s effort.

The size of the search spaceL(t ∈ T) corresponds to the number of distinct labeling assignments
that are possible for the underlying knot-diagram, regardless of whether those labelings are legal or
illegal. The space of consistent labelingsC(t ∈ T) is a proper subset of the space of all labelingsL(t
∈ T):

C(t ∈ T)⊆ L(t ∈ T) (1)

where:

1. T is the infinite space of all drawing topologies

2. t ∈ T is a specific instance ofT

3. L(t ∈ T) is the space of possible labelings givent

4. C(t ∈ T) is the subset ofL that is consistent (legal).

T consists of all possible knot-diagrams with unspecified crossing-states and no depth indices, but
with specified signs-of-occlusion. In other words, eacht ∈ T is a unique partial labeling, meaning
that some elements are labeled and others are not. As stated, signs-of-occlusion are specified in
instances ofT, but crossing-states and segment depths remain unspecified (Fig. 11) because signs of
occlusion are specified by the user when boundaries are created (recall the convention that clockwise

14

Figure 10: Demonstration ofDruid. Spline control points are defined in either a clockwise order
to create solids (A - F) or in a counter-clockwise order to create holes (H). Crossings are clicked to
flip overlapping surface subregions (G andI).

15

construction of a boundary defines a solid and counter-clockwise construction of a boundary defines
a hole).

For any individualt ∈ T there existsL(t) the space of possible labelings for that specific drawing
topology (Fig. 12).C ⊆ L is the subset ofconsistent(legal) labelings withinL, i.e., labelings in
which all elements of the knot-diagram satisfy the labeling scheme.

Both L andC are connected graphs (Fig. 13). InL, edges connect pairs of labelings that differ
by a labeling distanceL∆ = 1, i.e., a single crossing state or segment depth. InC, edges connect
pairs of consistent, legal labelings that can be transformed into one another through a single user
interface action such as a mouse click,i.e., pairs of legal labelings that have an edit distance,C∆ =
1.

a) b)

Figure 11: The space of all drawing topologies,T, is infinite. Some instances are shown here. Note
that signs of occlusion are specified and distinguish otherwise identical topologies (a andb), but
crossing states and depth indices are not specified.

7.1 Graph Distance Between Labelings

In aconnected graph(a graph in which there exists a path between every pair of vertices) thegraph
distancefor a pair of vertices is the number of edges that lie along the minimum length path between
the two vertices. The root of the search tree is a consistent labeling, a member ofC(t ∈ T), e.g., node

16

0
00 0

0
00 0

0
00 0

0
00 0

0
00 1

0
00 1

0 01 0

0 01 0

0 01 1

0 01 1

0 01 1

0 01 1

0 01 0

0 01 0

0
00 1

0
00 1

Figure 12: The space of labelingsL for a particular topology,t ∈ T, consists of all combinations
of crossing-states and depth indices for that topology. This figure showsL(t ∈ T) corresponding to
item a from Fig. 11. The two possible legal labelings are shown in bold and representC(t ∈ T) ⊆
L(t ∈ T).

17

A node with an illegal labeling in L

A node with a legal labeling in L (thus, a node in C)

u

xv

L = 1∆

C = 1∆

vertices of L
vertices of L & C
edges of L
edges of C

Figure 13:L(t ∈ T) is a connected graph where nodes are labeled figures and edges denote labeling
distanceL∆ = 1. C(t ∈ T) ⊆ L contains the consistent, legal labelings withinL. C(t ∈ T) is also
a connected graph. Edges ofC (shown as curves) denote user interface edit distances of 1,e.g., a
single mouse click.

18

v in Fig. 13. The goal of a minimum difference search originating fromv is to find the consistent
labeling with the minimum graph distance inC from v, e.g., u or x in Fig. 13 (for both of whichC∆
= 1 andL∆ = 2).

By simply multiplying the number of distinct assignments to elements of the knot-diagram, we
can compute the size ofL(t ∈ T) and an upperbound on the size ofC(t ∈ T). Since crossing-states
take on two values their number of combinations is 2R for Rcrossings. The number of combinations
of depth assignments is more complicated to calculate. Given an unlabeled figure, every boundary
segment has a maximum range of possible depths (Fig. 14). All boundary segments can theoreti-
cally lie at depth zero since they can always be lifted to depth zero by the user. Additionally, it is
always true that if two depths are possible, then all intermediate depths are possible. Therefore, the
range of depths for a boundary segment is limited to [0 - di] for segmenti with a maximum depth of
di . The number of combinations of depth assignments is the cumulative product of the depth ranges
for all boundary segments. Thus, the size ofL is:

2R ·
S

∏
i=1

di (2)

for Rcrossings,Ssegments, and wheredi is the maximum depth for segmenti. SinceL is a superset
of C, this value represents an upper bound on the size ofC. For drawings of a moderate size this
value can be extremely large given that we wantDruid to perform fast enough to not annoy the user.
Fast feedback is an important aspect of direct manipulation interfaces. Norman and Draper argue
that fast feedback reduces the user’s awareness of the computer as a barrier between themselves and
the drawing. This contributes to the user’s perception that he is interacting with real surfaces (see
Norman [15]).

In Fig. 14, the size ofL for each of the three drawings from left to right is 1, 16, and 110592
respectively. This figure illustrates the fact that the size ofL scales explosively relative to the com-
plexity of the drawing. SinceL represents the potential search space, there is an inherent challenge
in performing the search quickly. Performing the search quickly is crucial since it must be done
fairly often and should occur with minimal inconvenience for the user. The primary focus of our
research has been to find methods which can perform the search fast enough to not annoy the user,
namely turnaround times of less than a second.

0 0 0

[0-1]

[0-1]

00

[0-1]

[0-1]

[0-1]

[0-1]

[0-1]

[0-2]

[0-2]
[0-2]

0

[0-1]

Figure 14: For a particular labeled knot-diagram, each boundary segment has a range of possible
depths that it can assume, depending on how many surface subregions it overlaps. These figures
show three simple examples with the depth ranges for each boundary segment indicated.

19

7.2 Calculating the Depth Ranges for a Labeled Knot-Diagram

The depth ranges that a boundary can assume need to be calculated before the figure can be labeled.
Therefore, an efficient algorithm for finding the depth ranges is required. To solve this problem we
have framed the task of finding the depth ranges for all segments for a particular topology as a new
kind of labeling problem, similar to the labeling problem discussed in Section 5. The challenge is to
label a knot-diagram in the fashion shown in Fig. 14, where crossing-states remain unspecified but
all segments have a range of possible depths associated with them. Thisrelaxed labeling problemis
similar to the original labeling problem where the goal is to assign a single index to each segment.
In the original labeling problem the index is the actual depth of the segment in a topologically valid
labeling. In a relaxed labeling the index is thedepth rangefor a segment,i.e., the maximum depth
that a segment can assume among all topologically valid labelings.

x + 1

x

x + 1xA B

C

D

Figure 15: Therelaxed labeling schemeis a set of constraints on the depth ranges of the four bound-
ary segments that meet at a crossing. Each boundary occludes the half-plane on its right. Thus, for
the two boundaries meeting at a crossing, one half of each boundary will lie in theunoccludedhalf-
plane of the opposing boundary, and the other half will lie in thepotentially occludedhalf-plane of
the opposing boundary. The shaded regions in the figure show the potentially occluded half-planes
of each boundary. SegmentsB andC are potentially occluded. The labeling scheme requires that
the potentially occluded segments of a crossing have a depth range that is one greater than the depth
range of the unoccluded segments and that the two boundaries have the same depth ranges as each
other.

The constraints of the relaxed labeling scheme in Fig. 15 can be stated as follows:

1. SegmentB must have a depth range that is one deeper than segmentA.

2. SegmentC must have a depth range that is one deeper than segmentD.

3. SegmentsA andD must have the same depth range (and likewise for segmentsB andC).

The solution to the relaxed labeling problem can be formulated as a system of linear equations
which can be solved by Gauss-Seidel or Jacobi iteration:

20


−1 0 1 0 . . .

0 1 0 −1 . . .
0 1 1 0 . . .
...

...
...

...
...




A
C
B
D
...

 =


1
1
0
...

 (3)

where A, B, C, and D are the segment depth ranges for a particular crossing and the right column
vector according to Fig. 15.

Unfortunately, generalized equation solving methods such as Gauss-Seidel or Jacobi iteration
do not take advantage of constraints specific to the problem at hand,e.g., once a potential depth
range for a segment has been found, an intelligent algorithm would only permit deeper depth ranges
in subsequent iterations and never revert to shallower depth ranges. This constraint results from the
fact that any shallower depth range is naturally a subset of a deeper depth range. Therefore, once a
depth range has been found, there is no reason to ever consider shallower depth ranges, only deeper
depth ranges. Neither Gauss-Seidel nor Jacobi iteration takes advantage of this fact. Consequently,
these general purpose methods are not necessarily an efficient way to solve our system of equations.
Additionally, iterative methods are not always guaranteed to converge to a solution or convergence
may be quite slow. For these reasons, we have devised an iterative algorithm that determines the
depth ranges by acting directly on the knot-diagram in a series of iterative passes, starting from depth
zero and accumulating maximum depths for the segments incrementally. The algorithm terminates
when the depth ranges converge on their deepest possible values.

8 Editing 21
2D Scenes

Note thatDruid is much more than just an editor for labeled knot-diagrams. In a simpler program,
a user might manually edit crossing-states and segment depths without constraint. There are two
major problems with this approach. The first is that many of the knot-diagrams a user might create
would be illegal and could not be rendered. Thus, the burden would fall upon the user to carefully
manage the knot-diagram at all times. Transformations of the labeled knot-diagram would be in-
credibly tedious for the user to accomplish. The second problem is that the interface for such a
program would provide the wrong affordances. The affordances of such a program would not be
isomorphic with those of 212D scenes. This lack of isomorphic affordances would not give the user
the experience that he is editing a 21

2D scene, but rather the experience that he is managing the
details of a labeled knot-diagram. To summarize,Druid is actually an editor for 212D scenes, not for
labeled knot-diagrams.

Unlike Druid, Real-Drawessentially is an editor for its internal representation. The internal
representation ofReal-Drawis a global DAG with localized regions specifying local DAG changes.
The manipulations the user performs inReal-Drawequateedit distancesof exactly one withrep-
resentation distancesof exactly one. An edit distance is the total number of mouse clicks and key
presses necessary to transform one instance of a program’s representation into another. A repre-
sentation distance is the number of edges along the shortest path connecting two representations in

21

the graph of all representations, given a graph of representations in which the presence of an edge
signifies an elemental transformation between two representations. An elemental transformation on
a representation is a transformation in which a single parameter of a representation is altered. Since
Real-Drawequates edit distances of one with representation distances of one, the user is directly
manipulatingReal-Draw’srepresentation. This is not necessarily a good design. There are situati-
nos where the user’s intention may require navigating a large representation distance to achieve a
small 21

2D scene transformation distance, thus requiring the user the manually transform the starting
representation to the desired representation through several intermediate representations. This long
sequence of steps is tedious and distracts the user from his larger goals. For example, if the user
wants to invert the ordering of a pair of overlapping surfaces, that goal corresponds to a 21

2D scene
transformation of size one,i.e., anelemental scene transformation. However, in order to perform
such an edit withReal-Draw, the user must perform several steps. The push-back tool must be
selected, the push-back object must be created and carefully placed in the proper location, and it is
possible the push-back’s default reordering must be edited to properly alter the depths within the
push-back’s region. Therefore, the actions of the user do not correspond to transformations of the
scene, the user’s actions correspond to transformations of the representation. Consequently, the af-
fordances ofReal-Draware not isomorphic with those of 21

2D scenes. Rather, they are isomorphic
with transformations ofReal-Draw’sinternal representation, which is of no actual interest to the
user. To summarize,Real-Drawrepresents a genuine improvement over spoofs because it requires
far fewer and less delicate steps than construction of a spoof requires, but it still requires more steps
than would be necessary using a program which provides the natural affordances of 21

2D scenes.
Druid’s power derives from its ability to quickly search through the space of labeled knot-

diagrams for legal labelings. It presents the user with the experience of directly editing a 21
2D

scene, including interwoven scenes, rather than the experience of editing one scene with the appear-
ance of a desired scene,i.e., creating a spoof. The reason the user has such a qualitatively different
experience when usingDruid is that elemental scene transformations can be accomplished with sin-
gle mouse clicks. It is this isomorphism between editing operations and 21

2D scene transformations
that makesDruid so novel.

9 User Interactions

All drawing programs are, at some level, editors for their underlying representation. However,
more so than with other drawing programs,Druid’s interface is abstracted away from its internal
representation. It is, in effect, an editor for 21

2D scenes. Consequently, the user has the experience
of interacting with a 212D scene instead of editing a labeled knot-diagram. Several possible user
interactions were listed in Section 2. The effects of these interactions on the labeled knot-diagram
can be grouped into two major categories:

• Labeling-preserving interactions

• Interactions requiring relabeling

22

Labeling-preserving interactionsare interactions in which the topology of the labeled knot-diagram
does not change. In constrast,interactions requiring relabelingare of the following types:

• Drags or reshapes that create new crossings

• Drags or reshapes that delete existing crossings

• Drags or reshapes that change the order of existing crossings along the boundaries

• Change of the crossing-state of a crossing (“flipping” a crossing)

• Change of the sign occlusion of a boundary (flipping a sign of occlusion).

In the following sections we describe how these two kinds of interactions are handled byDruid.

9.1 Labeling-Preserving Interactions

Ideally,Druid should preserve the labeling during user interactions whenever possible because this
is necessary to provide a sense of continuity for the user. In other words, we assume that the user
does not want the labeling to change arbitrarily while he is editing a drawing because if it did, it
would prevent him from being able to construct the 21

2D scene he has in mind. Labeling changes
should only occur as the result of explicit constraints specified by the user. At all other times, the
labeling must be preserved so the user can maintain control over the drawing process.

When one boundary is dragged over another boundary, the crossings involved in both bound-
aries will move. The goal of preserving the crossings’ states during such interactions precludes
the naive method of deletion and rediscovery of crossings since such an approach would destroy
the crossing-states. The effect of destroying the crossing-states is that the knot-diagram would
have to be relabeled before the labeling would be legal again. While relabeling can be performed
fairly quickly, efficiency is not the only concern. It is also crucial that the labeling following a
non-topology-altering interaction match the labeling prior to the interaction. Because there is no
way of guaranteeing that the new crossing-states (those discovered after relabeling) will match the
old crossing-states, the naive method is infeasible. The only alternative is to avoid the relabeling
whenever possible.

For some interactions,e.g., drags and reshapes which do not alter the topology, the labeling
can be preserved by projecting crossings along the paths they follow on the boundaries (Fig. 16).
This method is more complicated to implement than the naive method, but it is the key toDruid’s
responsiveness.

The process of projecting crossings to their new locations during a move or reshape of a bound-
ary is calledcrossing projection. The algorithm that performs crossing projection is simple in its
outline but more complicated in its details. The goal is to analyze and follow the path that a cross-
ing follows around a boundary. This algorithm is relatively complex because there are a number
of special cases that must be properly detected and handled,e.g., the disappearance of a crossing,
which requires relabeling.

The algorithm is illustrated using a detailed example in Fig. 16, where the user has dragged the
lower boundary in a diagonal direction toward the upper-right in six discrete timesteps. Note that

23

stationary boundary

moving boundary

intersection A

1
2

3
4

5
6

drag direction

time step

intersection B

Figure 16: Dragging one boundary over another does not always alter the topology of the draw-
ing. In such cases, it is best to preserve the crossings by predicting their new locations rather than
deleting crossings and rediscovering them from scratch. In the above figure, the topology of the
knot-diagram does not change over time. Only the locations of the two crossings change.

24

the boundary moves discretely, from one location to another, and not continuously. These discrete
jumps result from two factors. The first is that there is a latency between mouse-generated hardware
interrupts, during which the mouse will drag a shape an unspecified distance. The second factor
is the pixelization of the canvas that the user is drawing on. B-spline control points can only be
dragged to and from integer pixel coordinates, and therefore exist in a discrete space. For these
reasons, the crossing projection algorithm assumes discrete timesteps and crossing locations.

Fig. 16 shows a straight-linedrag consisting of six timesteps. Between Timesteps 4 and 5,
crossing A moves from one segment of the stationary boundary to an adjacent segment of the same
boundary. Likewise, crossing B switches segments on the stationary boundary between Timesteps
2 and 3, and again between Timesteps 5 and 6. Additionally, crossing B switches segments on
the moving boundary between Timesteps 5 and 6. Although not illustrated in Fig. 16, it is in fact
possible for a crossing to traverse more than one segment during a single timestep, especially when
the segments are very short, or when the direction of motion is nearly orthogonal to the segment’s
orientation. The process by which a crossing is projected over a distance of many segments in a
single timestep is shown in detail in Fig. 17. As a further example of the difficulty of the task of
predicting the motion of crossings, notice that between Timesteps 5 and 6 in Fig. 16, crossing B
switches segments on both of its associated boundaries in a single jump. Fig. 17 illustrates this case
in greater detail.Druid must be able to handle all these cases.

The crossing projection algorithm is invoked after each timestep. All crossings that are affected
by the movement are immediately projected to their new locations. Since Fig. 16 illustrates six
distinct timesteps, it represents six invocations of the crossing projection algorithm for each of
the two crossings shown. The algorithm requires that the positions of all boundaries be known
both before and after the motion. First, the users drags a boundary. Second,Druid detects that a
change has occurred and calculates the new location of the boundary. Third, the crossing-projection
algorithm is performed to project the crossings to their new locations.

Crossing projection is performed by looping over all boundaries that have just been altered in an
outer loop, and then looping over all the crossings of each altered boundary in an inner loop. Each
crossing is individually projected to its new location.

Crossing projection is trivial if a crossing remains on its two assigned boundary segments after
a boundary moves to its new location. If a crossing’s two boundary segments still cross after a drag
or reshape is performed, then projecting the crossing is simply a matter of updating the coordinates
for the crossing. This is a trivial case becauseDruid does not have to determine which segments
the crossing has moved to, since the crossing remains on the original segments. If the two original
segments of the crossing no longer intersect after the boundary is moved, then the more complex
crossing-projection algorithm described below must be performed, in which a new pair of segments
is found which intersect at the new boundary location.

Fig. 17 illustrates how a single timestep is processed for a single crossing. It illustrates a
case in which the projection will be complicated to perform because the crossings having moved
many segments on both boundaries. Given a pair of segments belonging to a crossing that no longer
intersect after a boundary has been moved or reshaped (shown at the beginning of Iteration 1 as a pair
of bold segments), the algorithm enters a loop. Each iteration of this loop updates the segment-pair
assignment for the crossing by reassigning one of the two segments for the crossing and preserving

25

stationary boundary

moving boundary
position after jump

A

a

B

b

C

c

D

Iteration 0

original intersection location

d

moving boundary
position before jump

Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Figure 17: The sequence of drawings shown here illustrate successive iterations of the crossing
projection algorithm. Thick line segments show the segment pair associated with the crossing at
the beginning of each iteration. Circles show the intersections of the lines containing the segments.
Lowercase labeled segments (a-d) show the segment that will be switched out of the pair assign-
ment at the end of that iteration. Uppercase labeled segments (A-D) show the segment that will be
switched into the pair assignment at the end of an iteration. After a timestep, the algorithm tests
the original segments assigned to the crossing (shown in Iteration 1). In the example illustrated,
the segments no longer intersect. Since the error (the distance past the end of each segment to the
point of intersection of the lines containing the segment pair) is greater for the moving boundary at
the beginning of Iteration 1, the moving boundary segment assigned to the crossing’s segment-pair
assignment will be switched froma to A. The process continues until a pair of segments is found
that actually intersect, as shown at the beginning of Iteration 5.

26

the other. The loop terminates when the presently assigned pair of segments intersect.
Observe that between iterations in Fig. 17, one segment is retained while the other segment

switches to an adjacent segment on its boundary. The decision about which segment to retain is
made by measuring the two errors (the distance past the end of each segment to the intersection of
the lines containing the segment pair) of the crossing with respect to the two segments. The error for
one segment is the distance between the crossing and the nearest end of that segment. Notice that at
the beginning of Iteration 1, the error is less for the stationary boundary but that at the beginning of
Iteration 2 the error is less for the moving boundary. In each iteration, the segment with less error is
retained and the segment with the greater error is replaced by the adjacent segment of its boundary
in the direction closest to the point of intersection.

In some iterations, the crossing will only be in error on one of the two segments,e.g., Iteration
4. In such cases, the error for the segment that contains the crossing is zero. Consequently, that
segment is retained and the other segment is switched,e.g., as shown between Iterations 4 and 5.

The loop repeats until the pair of segments actually intersect, as shown at the beginning of Iter-
ation 5. The new location of the crossing is then calculated and the crossing has been successfully
projected to its new location.

9.2 User Interactions Requiring Relabeling

While some user interactions do not require relabeling, other interactions cause changes to the
knot-diagram’s topology, and therefore, require a search for a new legal labeling. Such interactions
include:

• Drags or reshapes that create new crossings

• Drags or reshapes that delete existing crossings

• Drags or reshapes that change the order of existing crossings along the boundaries

• Change of the crossing-state of a crossing (“flipping” a crossing)

• Change of the sign occlusion of an boundary (“flipping” a sign of occlusion).

Devising an algorithm that can find the minimum difference labeling quickly is difficult because
the search space may be extremely large relative to the complexity of the drawing. The crossing
projection method described above helps to avoid unnecessary search, but at other times, such as
those just listed, this is not possible. The process for relabeling a labeled knot-diagram is described
in the next section.

10 Finding a Legal Labeling

When the user causes a change that invalidates the current labeling,Druid must find a minimum
difference legal labeling as quickly as possible. We will describe how this is accomplished in the

27

case of acrossing flipuser-interaction,i.e., the user clicks on a crossing to flip its crossing-state, and
in doing so, inverts the depth order of the two subregions associated with that crossing.

When the user clicks on a crossing to flip its crossing-state, he is imposing a constraint that is
inconsistent with the present labeling.Druid then attempts to find a legal labeling that satisfies the
user’s constraint. This will often require other elements of the labeling to be changed, such as the
crossing-states of other crossings or the depths assigned to various boundary segments. Thus, the
search solves aconstrant-satisfactionproblem initiated by the change in crossing state specified by
the user.

10.1 Overview of the Search

The following is a list of the major data structures and variables that are required by the search
process:

• A list of touched boundaries. Touched boundaries are boundaries that are crossed while
traversing other boundaries.

• The depth ranges for all boundary segments.

• The “start” segment for each boundary (an arbitrary segment on each boundary, from which
segment enumeration begins).

• The best solution (so far). This solution will be revised throughout the search as better solu-
tions are found.

The search takes the form of aconstraint-propagationprocess, similar to Waltz filtering (see Waltz
[20]). Waltz’s research illustrates how certain highly combinatorially complex systems can be re-
duced in complexity to uniquely determined solutions through a process called constraint-propagation.
This term refers to the exploitation of local constraints on adjacent vertices in a graph. Thus, when
one vertex of a graph is labeled, this constrains adjacent vertices, which in turn propagate their own
constraints deeper into the graph. By means of this process, it is often the case that an apparently
ambiguous system can be reduced to a single consistent labeling.

10.2 Boundary Traversal During the Search

ThroughoutDruid’s search process, constraints are instantiated incrementally as the search process
explores the labeling throughboundary traversal, described below. As constraints propagate, each
constraint imposes additional constraints on other elements of the labeling. Thus, constraints propa-
gate through the graph, vastly reducing the size of the combinatorial search space. We will illustrate
the specific nature of the constraint-propagation later.

The search is performed in a set ofboundary traversals. A boundary traversal begins at an arbi-
trary location on a boundary with a predetermined depth and visits each segment on the boundary,
until it returns to the starting location. As a boundary is traversed, the traversal depth is altered
where and in the way which is appropriate. Where the traversal goes under an intersecting bound-
ary, the depth is incremented by one. Where it comes out from under an intersecting boundary, the

28

depth is decremented by one. The purpose of performing a boundary traversal is to test thezero
integration rulefor the traversal. This rule states that a complete traversal must change depth by
a net sum of zero,i.e., for every step a boundary goes down (as a result of going under a surface
at a crossing) the traversal must come back up again before the traversal is complete. This rule
guarantees that a traversal ends at the same depth that it started at, which in turn is a requirement of
a legal labeling.

The decision about which boundaries are traversed during the search is managed using the
touched boundary list, a list of boundaries that have been crossed during the traversal of other
boundaries. Since traversals visit every segment of a boundary, it is guaranteed that all boundaries
that intersect a traversed boundary will be visited. As boundaries are touched, the new boundary is
appended to the end of the touched boundary list. The touched boundary list is initially seeded with
all boundaries that are illegal,i.e., all boundaries that have at least one illegal crossing. In the case of
a crossing flip, the flipped crossing will initially always be illegal. Therefore, the touched boundary
list is seeded with the two boundaries that intersect at the flipped crossing. When all boundaries on
the touched boundary list have been legally traversed (a legal traversal satisfies the zero integration
rule) a leaf in the search tree has been reached. This corresponds to a potential solution.

Note that once a boundary traversal has begun, the depth changes that occur during the traversal
are uniquely determined. There are only three situations which can occur when a traversal reaches
a crossing:

• If the boundary being traversed is on top at the crossing, the depth is not changed.

• If the boundary being traversed goes under at the crossing, the depth increases by one.

• If the boundary being traversed comes up at the crossing, the depth decreases by one.

Thus, the depths around the boundary are determined uniquely during a traversal, as the constraint
propagates. The full combinatorics of possible segment depth assignments for a particular boundary
is the cumulative product of the depth ranges for all the segments for that boundary. This can be a
very large number. However, when propagating constraints around a boundary incrementally, using
the crossings as constraints on the depths of adjacent segments, the number of possible segment
depth assignments is no longer combinatoric at all; there is, in fact, only one possible segment-depth
assignment for the entire boundary. This vast reduction in the complexity of labeling a particular
boundary is a crucial aspect of the search algorithm because it would take a prohibitive amount of
time to search the full space of labelings.

While the differences in depth around a boundary are uniquely determined, the depth of the
initial segment of the traversal is constrained, but not uniquely. The depth of the initial segment
must be within the depth range for the initial segment, as shown in Fig. 14, but since any depth in
the range might be the depth of the optimum solution, all depths in the depth range of the initial
segment must be tested. This is accomplished by wrapping each boundary traversal within a loop
that restarts the traversal with each of the possible depths for the initial segment.

At this point, we have described how a single boundary traversal is effected, and we have spec-
ified that the goal of a boundary traversal is to test the boundary with the zero integration rule. A
failure of this test excludes the labeling that produces the illegal traversal from the set of potential

29

solutions. We have described how the touched boundary list is initialized with all boundaries that
are illegal at the beginning of a search and how the touched boundary list grows during the search
as a result of a traversal visiting other boundaries at crossings. Finally, we have described how
each single boundary’s traversal is repeated multiple times, once for each of the possible depths of
the initial segment. Next we will describe how the boundary traversal process is wrapped into a
larger tree-search which performs multiple boundary traversals during the course of the search for
a minimum difference labeling.

10.3 Structuring the Search

The search for a minimum difference labeling is a depth first search. There are two kinds of branch
points in the search tree. The first kind was described at the end of the previous section; each of the
possible depths for the initial segment of a traversal is the root of a distinct subtree which must be
searched. The other branch point occurs when a boundary traversal arrives at a crossing. Each of the
two crossing states is the root of a distinct subtree. One subtree maintains the existing crossing-state,
the other flips the crossing-state.

The following is a description of the entire backtracking search process. An empty touched
boundary list is created. This list is initially seeded with all illegal boundaries,i.e., the two bound-
aries associated with the crossing flipped by the user. The next boundary to be traversed is then
chosen from the front of the touched boundary list. This boundary is then traversed repeatedly
within a loop which enumerates each of the possible depths for the initial segment of that boundary.

As the traversal visits each crossing of the traversed boundary, the crossed boundaries are ap-
pended to the touched boundary list. When the traversal is completed, if the traversal satisfies the
zero integration rule, the next boundary on the touched boundary list is chosen and the traversal
process continues with the next boundary on the touched boundary list. If the traversal ends ille-
gally the traversal backtracks to the last unflipped crossing in the traversal, flips that crossing, and
continues traversing forward. Thus, all combinations of crossing-states for a boundary’s crossings
will be enumerated during the course of the search process.

If a traversal ends legally and there are no more boundaries on the touched boundary list, the
search has reached a leaf, or a potential search solution,i.e., a legally labeled figure. The solution
is assigned a score based on its difference from the labeling that preceded the search and then the
search continues by backtracking along the traversal in reverse, exploring other subtrees.

Each time a traversal enumerates all combinations of crossing-states for all crossings on the
boundary, a single traversal is completed and the depth range iteration for that traversal continues
to the next depth in the depth range. When the entire depth range has been enumerated, the next
boundary on the touched boundary list is selected. When the entire tree has been fully explored,
the search is completed. Of all the legal labelings, the one with the lowest difference relative to the
labeling prior to the search is accepted. The new labeling is then displayed and the user can initiate
a new interaction.

The accumulation of differences between labelings discovered by the backtracking search pro-
cess and the prior labeling occurs in only two ways:

• When a crossing is flipped, the difference is incremented by one.

30

• When a segment depth does not match its original depth, the difference is incremented by
one.

There are other potentialdifference scoring functionsthat could be employed. For example,
the numerical difference between a segment depth and its original depth could be used, so that the
accumulated difference for a particular segment might be greater than one. However, experiments
have suggested that an alternate scoring function is unnecessary.

11 Optimizing the Search

Because of the large size of the search space, searching for the minimum-difference labeling might
take a considerable amount of time. In the worst case the entire space might have to be explored.
Therefore, we employ a number of strategies in an effort to find the minimum-difference labeling
quickly enough to provide the user with a reasonable turnaround time. For the most part, these
strategies are not independent of one another, but work in tandem, each strategy increasing the
effectiveness of the others. The strategies are broken down into three major classifications:

• Choosing good boundary traversal starting segments

• Bounding the search using the current minimum difference to avoid a full enumeration of the
search space

• Ordering the search to produce tight search bounds based on minimum difference earlier
rather than later.

11.1 Choosing good boundary traversal starting segments

Each time an untraversed boundary is selected from the touched-boundary list, that boundary is
traversed within a loop over the possible starting depths for the segment where the traversal began.
Naively, we might choose the starting segment arbitrarily,e.g., by simply choosing the first segment
in the segment list. However, since there is no way to know in advance which starting segment depth
will yield the minimum-difference labeling, we have no choice but to enumerate all the possible
depths for the starting segment. This enumeration increases the search time. If we choose a starting
segment wisely, the search time can be greatly decreased.

Fig. 14 illustrates how this can be accomplished. When a traversal starting location must be
chosen, it is highly advantageous to choose a segment on the boundary with the minimum depth
range for the entire boundary as the starting segment. This method for choosing a traversal starting
segment can be easily accomplished if the depth ranges for all segments have been calculated in
advance.

Experiments with this feature enabled and disabled have demonstrated significant gains in per-
formance. While we do not presently have hard empirical data, we have informally observed that
search times can often be decreased by up to a factor of ten for drawings of moderate complex-
ity. Additionally, the benefit of this method appears to rise with the complexity of the drawing.
Therefore, this feature is absolutely crucial when editing large complex drawings.

31

11.2 Bounding the search

The goal of the search is to find a minimum-difference labeling with respect to the labeling that
existed prior to the interaction. The difference between a candidate labeling found during the search
and the prior labeling is accumulated, oneδ at a time, during the search process as the boundary-
traversal algorithm branches; either preserving features of the labeling (δ = 0) or altering them
(δ = 1). The sum of allδ ’s between two labelings is termedL∆. Branching occurs when the
boundary traversal arrives at crossings and as the starting depths of a traversal are enumerated.
Notice that the accumulatedδ can never decrease and that it is possible to exploit this fact during
the search to improve performance by bounding.

If there was some way of knowing that the accumulatedδ at any given point in the process had
surpassed theL∆ of the optimum solution, then there would be no need to continue exploring the
subtree beneath that point in the search tree for potential labelings.

At the outset of the search, there is no way to exploit such knowledge because we cannot know
in advance theL∆ of the actual minimum-difference labeling. However, as the search proceeds,
candidate labelings will be found. They might not be the optimum, but theirL∆ will be known,
and although we cannot stop the search at the first legal labeling found because there is no way of
knowing if it is the optimum, we can use itsL∆ as a bound on the subsequent search.

This process allows us to steadily increase the efficiency of the search as the search progresses.
The search begins with an infinite bound. When a solution is found, the bound is tightened to that
solution’sL∆ and the remaining search becomes more efficient as a result. Later, if a solution with
an even lowerL∆ is found, the bound is tightened further, making the remaining search even more
efficient. This process can quickly prune enormous parts of the search space from consideration,
thereby vastly increasing the efficiency of the search.

11.3 Ordering the Search

Bounding the search works best if we can find a good solution,e.g., a solution with a tight bound,
early in the search. By guessing that certain labelings have a better chance of being the optimum,
we may order the search so that those labelings are explored first.

There are a number of criteria we can use to judge whether or not a potential labeling is a
good candidate for early expansion. The purpose for formulating the problem as a search for the
minimum-difference labeling was, as described previously, to allowDruid to anticipate the user’s
intentions. We assume that the user wants the minimum necessary change to occur. Similarly, we
assume that the user expects most changes to occur within a relatively small region surrounding the
location of the user specified constraint. This region is termed thearea of interest.

If we order the search so that regions of the search space within the area of interest are explored
first, then we can effectively enumerate all possible labelings which differ from the prior labeling
only within the area of interest before considering any labelings which differ from the prior labeling
outside of this area. Ordering the search in this manner has two benefits. First, it most likely reflects
the user’s intent. Second, the number of potential changes in a compact area is significantly smaller
than the number of potential changes in the entire drawing, so we will find any solutions where
changes are restricted to that area much more rapidly than we would find solutions where changes

32

are restricted to the larger area.
One way to order the search so as to explore changes within the area of interest before changes

outside it is to perform a breadth first search of the potential labelings. This would be feasible if the
topology of the search tree is structured such that graph distances with respect to the user’s area of
interest in the knot-diagram correspond to depths in the search tree. In such a tree, exploring high
levels of the tree before exploring low levels of the tree would cause labeling changes within the
area of interest to be explored first. As it happens, the search tree is already organized in exactly
this fashion. To appreciate this, one should keep in mind the distinction between the search space,
which is a connected graph of labelings in which edges correspond to pairs of labelings differing
by exactly one (Fig. 13), and the search tree, which represents the labelings explored by the search
algorithm. Since upper levels of the search tree contain labelings with a lowL∆, they are within a
bounded neighborhood of the area of interest.

So, although breadth first search has advantages, the algorithm described in Section 10 is a
depth first search because subtrees are expanded regardless of the crossings’ distances from the area
of interest. Ordering the search such that those crossings inside the area of interest are expanded
before crossings outside the area of interest would be a better approach, and could be implemented
using breadth first search.

Unfortunately, implementation of breadth first search requires a queue of partially labeled knot-
diagrams,i.e., the internal vertices of the search tree correspond to partial labelings, in which some
aspects of the labeling are resolved and others are illegal or unresolved. Maintaining numerous
partial labelings during the search would be costly, in terms of both storage and time. Thus, the
overhead required to implement a breadth first search might be so costly that any benefits derived
from using it would be negligible. In the worst case, the overhead required could incur a net cost
instead of a net benefit.

Instead of using breadth first search, we can achieve many of the same advantages of breadth first
search by executing a depth first search within aniterative deepeningloop, which is commonly used
in game tree search algorithms (see [9]). We do this by calculating, in advance, the graph distance
between every crossing in the knot-diagram and the crossing in the center of the user’s area of
interest. We then perform the depth first search described above in a loop where the search horizon
increases by one after every iteration. As a boundary is traversed to test the zero integration rule,
the traversal will potentially wander outside the area of interest. Without iterative deepening, all
branches in the search tree would be expanded in the order they are encountered during a traversal.
However, when wrapped within an iterative deepening loop with an increasing horizon, no crossings
beyond the present horizon will be expanded. For example, in the first iteration of the loop, only
the immediate neighbors of the crossing the user flipped are expanded. As a result, the traversal of
a boundary in the initial loop will take linear time with respect to the number of crossings along a
boundary.

It should be noted that of the two kinds of branch points mentioned above (crossing-states and
boundary traversal starting depths), only one of these is constrained by iterative deepening. While
Druid uses iterative deepening to constrain crossing-state branch points to crossings that lie within
the iterative deepening horizon, it always selects traversal starting segments by choosing the seg-
ment of a boundary with the minimum depth range of all the segments on that boundary regardless

33

of whether the chosen boundary segment lies within the iterative deepening horizon. Despite this in-
consistency, informal observation of the performance that results from applying iterative deepening
to crossing-state branch points has demonstrated significant performance gains.

Not only does iterative deepening expand subtrees corresponding to crossings within the area of
interest first and which are therefore more likely related to the user’s goal, but it also finds labelings
with small∆’s which provide stronger bounds early, which increases the effectiveness of the branch
and bound search. Since there are only a small number of crossings within the area of interest, any
solution that is found within that area will have a small∆. Finding strong bounds early pays off
heavily in terms of search efficiency.

The discussion so far has focused on the user-interaction offlipping a crossing, in which a
user intentionally alters the layer ordering of overlapping subregions of two surfaces. There are
more complex interactions as well, as described in Section 10. These interactions are often more
complex than flips because they can invalidate significant portions of the knot-diagram. Without
going into the detail of how such situations are handled, it suffices to say that the search for a
minimum difference legal labeling in such situations is basically similar to the method described
above. The management of the knot-diagram and the calculation of the knot-diagram∆’s is more
complex, but the basic approach is the same.

12 Boundary Grouping With Cuts

One feature that is common to almost all drawing programs is the ability to group objects together.
Groups are usually provided so that transformations like translation, scaling, and rotation can be
applied to all of the members of a group. Users who are familiar with other drawing programs
might expect that the most obvious objects to group inDruid would be individual boundaries since
these are closely analogous to objects in other drawing programs. However,Druid also possesses a
higher level of abstraction in whichsurfacesare the central objects, not individual boundaries. The
use of surfaces as an organizing concept inDruid potentially conflicts with the user’s expectation
that group members be boundaries since a user may inadvertently create a group consisting of some
boundaries from one surface and some from another.Druid handles these two kinds of objects,
boundaries and surfaces, differently with respect to grouping. The multiple boundaries of a single
surface are automatically grouped byDruid without any intervention from the user. The purpose
is to allow a surface to be manipulated easily,e.g., to translate a surface across the canvas without
individually dragging each boundary component of that surface to its new location. Additionally,
the user can group multiple surfaces into a temporaryselectionfor the purpose of performing group
transformations on a set of surfaces. A selection is transient in nature, in that it only exists for as
long as the user keeps the selection selected. There cannot be multiple simultaneous selections,
and selections are not stored as part of any persistent representation, but exist rather as a temporary
grouping outside the representation for the purpose of applying user actions,e.g., transformations,
to the surfaces in a selection.

Boundary groups are not required forDruid to legally label a drawing. As in other drawing
programs,Druid can use groups as a basis for translation of a surface with multiple boundaries.
However, the more important use is for eliminating ambiguities about which surfaces boundaries

34

belong to. For example, in Fig. 18 (left), there exists an ambiguity as to whether boundary B
bounds a surface below boundary A, above boundary A, or is part of the same surface as boundary
A. This ambiguity will potentially cause problems,e.g., if a the user were to attempt to place a third
boundary that overlaps the ambiguous surface of A and B. In such a situation, there is the possibility
that the third surface might be placedbetweenboundaries A and B. Clearly, if the user’s intent is
for boundaries A and B to be part of the same surface, then such a placement violates the user’s
expectation about the effects of his interactions. Grouping boundaries can minimize this kind of
problem.

Cut

Boundary A solid

Boundary B hole

Gap

Boundary A solid Boundary A solid

Boundary B hole Boundary B hole

Figure 18: Acut can be thought of as a scissor cut through a surface connecting two boundaries of
that surface. Cuts are used to group boundaries together for group transformations like translation,
scaling, and rotation.

Groups are not created in the traditional way, through manual user grouping. Instead,Druid
automatically finds and maintains groups without requiring any input from the user. It does this by
finding and maintainingcuts. A cut can be thought of as a scissor cut through a surface connecting
two boundaries that belong to a single surface. A cut converts two boundaries of a surface into a
single boundary. See Fig. 18 (middle and right). After a cut is discovered it is used to create a
boundary group. If a cut can be found between the two boundaries, as shown in Fig. 18, then the
two boundaries are demonstrably part of the same surface and can be grouped for later operations
that would otherwise require this particular ambiguity to be resolved.

Observe that the discovery of a cut between two boundaries effectively connects the two bound-
aries into a single closed boundary. Cuts effectively reduce the number of boundaries in a drawing,
by one per cut. Consequently, they reduce the overall complexity of a drawing, thereby reducing
the size of the search space and making the search significantly faster.

13 Rendering

Rendering consists of converting the labeled knot-diagram (Fig. 19, left) to an image with solid fills
for contiguous bounded regions of the canvas. To render opaque surfaces, we only need to find the
depth zero surface for each region (Fig. 19, center). However, to render transparent surfaces we
must find the full depth ordering of all surfaces for each region so that a transparent coloring model,

35

such as Metelli’sepiscotistermodel (see Metelli [11]), can be applied (Fig. 19, right).

Figure 19: A labeled knot-diagram (left) can be rendered into a surface rendering such as those
shown above (center, right). The surfaces associated with each region must be determined so that a
proper coloring for that region can be assigned to the final image.

Rendering is the process by which a labeled knot-diagram (Fig. 19, left) is converted into an
image in which contiguous bounded regions of the canvas are filled with designated colors. To
render opaque surfaces (Fig. 19, center),Druid only needs to find the depth zero surface for each
region. However, to render transparent surfaces (Fig. 19, right) it must find the full depth ordering
of all surfaces for each region so the coloring model can be applied.

To find the surfaces associated with a regionDruid uses aslice. A slice is similar to a cut except
that instead of connecting two boundaries of a surface, a slice connects one boundary of a surface
to an arbitrary location within the surface (Fig. 20). To find the surfaces associated with a region
of the canvas,Druid finds slices within the region that originate at a location inside the region and
terminate on surrounding boundaries at various depths, iterating from depth zero and increasing
in depth until it fails to find a boundary for a slice that starts at a particular depth. This process
establishes a depth-ordering for all of the surfaces associated with the region in question so that a
coloring model can then be applied.

14 Conclusions

All drawing programs must have a way to distinguish which surface is on top for any overlapping
pair of subregions. Existing drawing programs solve this problem by assigning surfaces to distinct
layers in depth. Consequently, interwoven sets of surfaces cannot be represented, thus precluding a
large class of potential drawings. Since drawings should be able to depict any 21

2D scene, a drawing
program should use a representation that permits the construction of any 21

2D scene. Unfortunately,
the assumption adopted by most existing drawing programs is that surfaces reside in distinct layers.
This assumption is not true of the space of all possible 21

2D scenes. Therefore, existing drawing
programs cannot represent all 21

2D scenes. We have developed an innovative new drawing program
with the following major capabilities:

36

Slice

Boundary

Gap

Boundary

Figure 20: A slice connects a boundary to a location inside the bounded surface. Slices are used
to find the depth ordering of the surfaces associated with a particular region. This must be done in
order to render a scene.

• Naturally representing a more general class of drawings than other programs,i.e., drawings
in which surfaces may interweave

• Providing user-interactions in the form of user specified constraints which are automatically
propagated throughout the drawing to maintain topological validity of the representation

Specific contributions of this work are as follows:

• Use of labeled knot-diagrams as the basis for a more general drawing tool capable of repre-
senting drawings of interwoven surfaces

• Development of a method for projection of the locations of crossings of surface boundary
components after move and reshape interactions

• Development of a relaxation method for determining depth ranges for boundary segments in
a labeled knot-diagram based representation

• Development of a branch and bound search method for efficiently finding minimum difference
labelings with respect to the labeling preceding a user action

• Introduction of the notion of cuts for representing surfaces with multiple boundary compo-
nents and for reduction of the search space

• Introduction of the notion of slices for determining which surfaces contribute color to each
subregion of the canvas for the purpose of rendering.

Druid uses a novel surface representation which makes it possible to represent a more general class
of drawings than is possible with existing drawing programs.Druid represents surfaces by their
closed boundaries and only maintains local constraints on the ways in which boundaries can cross
one another. This local constraint does not impose a global layering on the elements of the drawing
and therefore permits the construction of scenes of interwoven surfaces.

37

Additionally, Druid’s interface provides the natural affordances of 21
2D scenes in that actions

performed by the user are isomorphic to elemental transformations of 21
2D scenes. UsingDruid

is easy because it operates in a way which is consistent with a user’s intuition about real surfaces.
Therefore, a user must learn relatively few new skills in order to start usingDruid. Druid’s affor-
dances minimize the effort required of the user and decrease the time required to construct complex
drawings.

Figure 21: Shown above are several examples of artwork created withDruid . The construction and
maintenance of these drawings is simple and straightforward.

38

References

[1] Coreldraw graphics suite upgrade matrix, 2003.
http://www.corel.com/content/pdf/cdgs12/CDGSVersion to Versionmatrix.pdf

[2] Craig, D., LisaDraw 3.0 manual, 1984.

[3] Gibson, J. J.,The Ecological Approach to Visual Perception, Houghton Mifflin Co., Boston,
MA, 1979.

[4] Gleicher, M., Briar: A constraint-based drawing program,Proc. of CHI, Monterey, CA, 1992.

[5] Gleicher, M., and A. Witkin, Differential Manipulation,Proc. of Graphics Interface, Calgary,
Alberta, pp. 61-67, 1991.

[6] Huffman, D. A., Impossible Objects as Nonsense Sentences,Machine Intelligence, 6, 1971.

[7] ivtools team, idraw man page.
http://www.ivtools.org/ivtools/idraw-README.txt

[8] MacPowerUser team, iDraw 1.3.2 README, 2002. Available as part of the downloadable
iDraw package.
http://www.macpoweruser.com/downloads.html

[9] Marsland, T. A., and M. Campbell, Parallel Search of Strongly Ordered Game Trees,ACM
Computing Surveys, 14 (4), pp. 533-551, 1982.

[10] McGrenere, J., and W. Ho, Affordances: Clarifying and evolving a concept,Graphics
Interface, pp. 179-186, May 2000.

[11] Metelli, F., The perception of transparency,Scientific American, 230(4), pp. 90-98, 1974.

[12] Myers, B. A., A brief history of human computer interaction technology,ACM Interactions, 5
(2), pp. 44-54, 1998.

[13] Norman, D. A., Affordance, conventions, and design,Interactions, pp. 38-43, 1999.

[14] Norman, D. A.,The Design of Everyday Things, Basic Books, 2002.

[15] Norman, D. A., and S. W. Draper,User Centered System Design: New Perspectives on
Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[16] Raisamo, R., and K-J R̈aihä, Techniques for Aligning Objects in Drawing Programs,
Technical Report, University of Tampere, Department of Computer Science, A-1996-5, 1996.
http://citeseer.ist.psu.edu/raisamo96techniques.html

[17] Sato, T., and B. Smith, Xfig User Manual, 2002.
http://xfig.org/userman/

39

[18] Sutherland, I. E., Sketchpad: A man-machine graphical communication system, Technical
Report, Univ. of Cambridge, Sept, 2003. This technical report is a modern republication of
Sutherland’s 1963 doctoral dissertation.

[19] Voska, R., Real-Draw manual, pp. 67-72, 2003.
http://www.mediachance.com/files/RealDrawPDF.zip

[20] Waltz, D. L., Understanding line drawings of scenes with shadows, McGraw-Hill, New York,
pp. 19-92, 1975.

[21] Williams, L. R.,Perceptual Completion of Occluded Surfaces, PhD dissertation, Univ. of
Massachusetts at Amherst, Amherst, MA, 1994.

40

