
Representation of Interwoven Surfaces in 2 1/2D Drawing

Keith B. Wiley
University of New Mexico
Computer Science Dept.

kwiley@cs.unm.edu

Lance R. Williams
University of New Mexico
Computer Science Dept.
williams@cs.unm.edu

ABSTRACT
The state-of-the-art in computer drawing programs is based
on a number of concepts that are over two decades old. One
such concept is the use of layers for ordering the surfaces in a
drawing from top to bottom. Unfortunately, the use of layers
unnecessarily imposes a partial ordering on the depths of the
surfaces and prevents the user from creating a large class of
potential drawings,e.g., of Celtic knots and interwoven sur-
faces. In this paper we describe a novel approach which only
requires local depth ordering of segments of the boundaries
of surfaces in a drawing rather than a global depth relati-
on between entire surfaces. Our program provides an intui-
tive user interface which allows a novice to create complex
drawings of interwoven surfaces that would be difficult and
time-consuming to create with standard drawing programs.

Author Keywords
drawing programs, layers, knot diagrams, braids, surfaces,
computational topology, constraint propagation

ACM Classification Keywords
H.5.2 User Interfaces; I.3.3 Picture/Image Generation; I.3.4
Graphics Utilities; I.3.6 Methodology and Techniques

INTRODUCTION
Drawing programs originated with Sutherland’s seminal
PhD thesis in 1963, in which many recognizable components
of modern drawing programs were already present [19]. Ap-
ple’s LisaDraw 3.0, released in 1984 is a more recent ex-
ample [4]. LisaDraw possessed much of the functionality
found in most modern drawing programs. In the twenty years
sinceLisaDraw’s release, developers of drawing programs,
e.g., [1, 3, 8, 17], have refined the basic approach, but not in
ways which deviate significantly from the established para-
digm.

One function of a drawing program is to allow the creati-
on and manipulation of drawings of overlapping surfaces,
which we call21/2D scenes. A 21/2D scene is a representa-
tion of surfaces that is fundamentally two-dimensional, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2006, April 22-27, 2006, Montŕeal, Qúebec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00 .

A

B C

D
E

F

F

E

D

B C

A

Figure 1. The classic approach to representing relative surface depths is
to assign the surfaces to distinct layers. This implicitly imposes a DAG
on the surfaces such that no subset of surfaces can interweave because
this would require a cycle in the graph.

which also represents the relative depths of those surfaces
in the third dimension. Using existing programs, a drawing
can easily be created in which multiple surfaces overlap in
varioussubregions. When multiple surfaces overlap, the pro-
gram must have a means of representing which surface is on
top for each overlapping pair of subregions. Existing dra-
wing programs solve this problem by representing drawings
as a set of layers where each surface resides in a single layer.
For any given pair of surfaces, the one that resides in the
upper (or shallower) layer is assigned a smaller depth in-
dex and appears above wherever those two surfaces over-
lap. Consequently, the use of layers imposes a partial orde-
ring, or a directed acyclic graph (DAG), on the surfaces such
that no subset of surfaces can interweave (Fig. 1). Because
such programs do not span the full space of possible 21/2D
scenes, they preclude many common drawings which a user
may wish to construct (Fig. 2).

Our research uses a more general representation as the ba-
sis for a more powerful drawing tool, calledDruid. Druid
eliminates the assumption that surfaces cannot interweave.
It therefore spans a larger space of 21/2D scenes by using
a representation that makes weaker assumptions about the
drawing.

Some research has already been done on programs for con-
structing Celtic knotwork,e.g., Scharein’s PhD thesis [18].
Such systems, however, are limited to knot constructions,
i.e., interwoven cords.Druid, on the other hand, permits the

Figure 2.Druid permits the construction of drawings of interwoven sur-
faces, such as those shown here: Olympic rings and Star of David.

construction of much more general scenes in which the sur-
faces can be any orientable two-manifold with boundary.

Perhaps the research that most closely resemblesDruid is
that by Baudelaire and Gangnet [2], which relies onpla-
nar mapsas the organizing principle for a drawing tool and
map-sketchingas a means to construct 21/2D scenes. Planar
maps permit the construction of overlapping curve segments,
which are subsequently pruned using map-sketching, during
which some edges are erased. Each face of the graph (an
edge-bounded region of the surface boundary graph) can be
assigned an independent color in the drawing.

With a proper erasure of edges and coloring of faces, the illu-
sion of interwoven surfaces can be achieved. It is interesting
to note that edge erasure is not required for this method to
work and is therefore superfluous,i.e., faces can be colored
to achieve the appearance of interwoven surfaces without er-
asing any edges. This approach is quite similar to the best
method available inAdobe Illustrator[1] for constructing
21/2D scenes in which the user converts a series of overlap-
ping curves into a planarized graph in which the faces can
be assigned independent colors. As such, the Baudelaire me-
thod is simply theIllustrator method with an additional (and
unnecessary) edge-erasing interaction, although their rese-
arch predates the implementation of this feature inIllustra-
tor.

These approaches do not possess the natural affordances of
21/2D scenes. The edit distances required to traverse elemen-
tally similar drawings can be quite large. In effect, these ap-
proaches aim to simplify the process of constructingspoofs,
a term we discuss at some length later in this paper.

DRAWING PROGRAM USER-INTERACTIONS
Druid uses B-splines to represent boundaries. Similar to
MacPowerUser’s iDraw[8], all shapes are splines, inclu-
ding shapes that may be approximated by splines, such as
rectangles and text. The assumption that all boundaries are
splines lends a uniformity to a drawing program’s interface
that makes it easier for a user to understand. There are a
number of user interactions that a spline-based drawing pro-
gram should permit. These interactions include:

• Create a new boundary
• Delete a boundary

• Smoothly reshape a boundary
• Drag a surface (drag all of its boundaries)
• Add or remove spline control points
• Increase or decrease spline degree
• Reverse a boundary’ssign of occlusion(discussed later)
• Reverse the depth ordering of two overlapping surface

subregions.

The interface of a program should not only provide a me-
thod for each of these interactions; these methods must be
user-friendly, i.e., simple to understand and easy to use. Un-
fortunately, the only previous attempt to circumvent the par-
tial ordering limitation,MediaChance’s Real-Draw Pro 3,
forces the user to use a complex and confusing interface.

Software Affordances
A software application’s interface possesses a specific set of
affordances. The term was originally coined by Gibson [5]
and later used by Norman [13, 14]. There are multiple in-
terpretations for this term and how it should be applied to
design (see McGrenere [10]). We define the affordances of
a software user interface as the ways in which the user can
interact with the screen’s imagery. This interaction usually
involves a keyboard and a mouse. In the case of drawing
programs, use of the keyboard is generally minimized be-
cause this violates the notion ofdirect manipulation interfa-
ces(discussed below). Therefore, the affordances of drawing
programs mainly consist of clicking on and dragging various
features of the visual presentation,e.g., spline control points,
with a mouse and associated cursor.

Idealized physical surfaces possess certain natural affordan-
ces. They can be stretched, translated, cut into smaller sur-
faces, have holes cut in them, and be lifted above or pushed
beneath one another in potentially interwoven arrangements.
They can also be colored or be made transparent. We belie-
ve that a set of affordances isomorphic to those of idealized
physical surfaces should be provided by an effective drawing
program. Unfortunately, many drawing programs do not of-
fer such a set of isomorphic affordances. It is our belief that
while some programs, such asReal-Draw, attempt to solve
the problems posed in this research, they do so through inter-
faces with unnatural affordances which make the programs
complicated and non-intuitive to use.Druid’s interface pos-
sesses affordances which are isomorphic to the affordances
of the physical surfaces which are depicted. As such, it is
simpler to use, while at the same time, is more powerful than
existing drawing programs in its capability to create and edit
complex 21/2D scenes.

Direct Manipulation and Constraint-based Interfaces
In our design ofDruid, we have embraced the concept of a
direct manipulation interface(see Norman and Draper [15]).
A direct manipulation interface is an interface which allows
the user to interact with the depicted object using the most
direct method possible given the I/O devices that are availa-
ble. The basic premise of a drawing program as a tool which
shows the drawing as it is being constructed may seem ob-
vious now, but it originated with the WYSIWYG concept
that came out of Xerox PARC in the 1970s (see Myers [12]),

which is a fundamental component of a direct manipulation
interface. In addition, Raisamo and Raiha applied the idea
of direct manipulation interfaces to the problem of aligning
objects in a drawing [16].

The most common application of constraints in drawing pro-
grams is gravity-snapping, where the cursor snaps to grid
points for the purpose of keeping objects aligned. A slightly
different approach snaps objects to other objects rather than
an underlying grid (see Gleicher [6]).Druid’s operation is
also based on constraints. First,Druid constrains the user
to constructing topologically valid 21/2D scenes. Second, a
user’s interaction with a drawing takes the form of a cons-
traint, indicating the user’s intent, that guides the search pro-
cess for a new legal labeling.

SPOOFS
With considerable effort, itis possible to create images with
existing drawing programs that depict interwoven surfaces.
However, the underlying representation in such cases is not,
and cannot be, truly interwoven. This is accomplished in exi-
sting programs by constructing one set of surfaces which has
the appearance of a completely different set. We call this sort
of illusion a spoof (Fig. 3). Spoofs represent non-generic
configurations, where various elements of a drawing are pre-
cisely aligned to create the illusion of interwoven surfaces.

(2) Paste.

(1) Start with the right ring on the
bottom. Copy just the right ring
in the selected rectangle.

(3) Place the spoof precisely
 over its original position,
 on top of both rings.

(4) The spoof is brittle. If either
ring is moved, the spoof breaks.

Figure 3. A spoof is a process by which the illusion of interwoven sur-
faces can be constructed in a layered system. The underyling represen-
tation does not match the final rendered image.

Although spoofs are a sufficient method for creating rende-
red images of interwoven surfaces, they are tedious to con-
struct, requiring many steps to be performed with precision.
Furthermore, they are brittle because once a spoof has been
constructed, any alterations to the drawing will require the
spoof to be redone.

STAGES IN DRAWING PROGRAM EVOLUTION
In this section we describe a progression of drawing pro-
gram functionalities leading up toDruid. This progression
classifies drawing representations in three stages of increa-
sing generality.

Stage 1 consists of programs based on representations that
can be described as layers of constant depth, and includes
virtually all existing drawing programs.

Stage 2 consists of programs based on partial orderings, but
which allow the user to define special regions of the canvas
where the partial ordering will differ from the global DAG.
To our knowledge, the only program in this category isMe-
diaChance’s Real-Draw Pro-3(see Voska [20]).Real-Draw
starts out with a basic layered representation, but then pro-
vides a special tool called thepush-back. This tool lets the
user define a region of the canvas where the partial ordering
can be locally altered. The layer that resides at depth zero
within the selected region can be pushed down to an arbitra-
ry depth, placing it beneath some or all of the (previously)
deeper layers (Fig. 4).

Figure 4.Real-Drawprovides apush-backtool, which allows the user to
define a region of the canvas and then manipulate the ordering of the
layers within that region.

Stage 3 consists of drawing programs based on representa-
tions that do not rely on any form of a partial ordering of
the surfaces. Such a representation contains only localized
information about the depths of various subregions of the
surfaces. We do not know ifDruid’s representation is the
best representation of this type, but it has been proven that
Druid’s representation is sufficient to represent the full space
of 21/2D scenes (see Williams [23]).

One might ask what advantages Stage 3 drawing programs
have relative to Stage 2 drawing programs. One problem is
that Real-Draw’sinterface for manipulating surfaces is so-
mewhat awkward. Because the push-back object does not
reflect the way humans perceive and reason about surfaces,
it is not a natural tool for editing drawings of overlapping
surfaces,i.e., it does not possessnatural affordances (affor-
dances that are isomorphic between the drawing being edited
and the surfaces which are depicted).

More significantly,Real-Drawdoes not span the space of
21/2D scenes. There are two situations where this can arise.
The first occurs when the user attempts to create a surface
that overlaps itself. Each surface inReal-Drawis represented
by a single label in the global surface DAG. A push-back
only allows the reordering of layers based on labels in the
DAG. Two overlapping subregions of the same surface will
have the same global label, and that label will only occur

once in the DAG. Consequently, there is no way to represent
a self-overlapping surface (Fig. 5).

Figure 5. Real-Drawcannot properly represent self-overlapping surfa-
ces. Since a surface has only one label in the surface layer list, there is
no way to manipulate the depth ordering of multiple subregions belon-
ging to a single surface. For this reason,Real-Drawcannot represent
self-overlapping surfaces.

An additional problem withReal-Drawis that the push-back
object only allows the depth zero object to be pushed down.
Therefore, there is no way to manipulate the ordering of de-
eper layers. If surfaces are opaque this does not matter since
only the depth zero surface will be visible. However, if surfa-
ces are transparent, then the ordering of deeper layers might
affect (depending on the exact transparency model used) the
appearance of a region where multiple surfaces overlap.

In theory, the push-back could be expanded in its power
to allow a more comprehensive manipulation of the sur-
face depths. However, the more serious problem of self-
overlapping surfaces would remain unaddressed.

Druid’s Stage 3 approach is more powerful in both of the-
se regards since it naturally represents both self-overlapping
surfaces and transparent surfaces with ease.

1

0

10

0

0

0
1

0

0
1

0

1
0

0

0

1

0
10

0

1
0

Figure 6. A knot-diagram(left) is a projection of a set of closed curves
onto a plane together with indications of which is on top at every cros-
sing. A labeled knot-diagram(right, see Williams [23]) is a knot-diagram
with a sign of occlusion for every boundary and a depth index for every
boundary segment. Arrows show the signs of occlusion for the bounda-
ries, always denoting a surface bounded to the right of a boundary with
respect to travel of the boundary in the direction of the arrow.

LABELING SCHEME
In order to build a Stage 3 drawing tool, it is necessary to
develop a fundamentally new approach for the representati-
on of drawings. Existing drawing programs represent a dra-
wing as a set of regions which comprise the interiors of a set
of surfaces. In constrast, a Stage 3 program represents the
boundariesof surfaces and is not concerned with the regi-
ons interior to a surface until the final rendering step.

Druid represents a 21/2D scene as alabeled knot-diagram
(see Williams [23]). Aknot-diagramis a projection of a set
of closed curves onto a plane and indicates which curve is
above wherever two intersect (Fig. 6, left). Williams exten-
ded ordinary knot-diagrams to include asign of occlusion
for every boundary and adepth indexfor every boundary
segment (Fig. 6, right). The sign of occlusion is illustrated
with an arrow and denotes a bounded surface to the right
with respect to a traversal of the boundary in the arrow’s di-
rection.

This paper describes the algorithmDruid uses to assign a la-
beling to a knot-diagram. The process of assigning a labeling
is similar to Huffman’sscene-labeling(see Huffman [7]),
in which he developed a system for labeling the edges of a
scene of stacked blocks. InDruid. the labeling consists of
signs-of-occlusion, crossing-states, and segment depth indi-
ces. Thelabeling schemeis a set of local constraints on the
relative depths of the four boundary segments that meet at a
crossing (Fig. 7). If every crossing in a labeled knot-diagram
satisfies the labeling scheme, the labeling is alegal labeling
and represents a scene of topologically valid surfaces. Le-
gal labelings can be rendered,i.e., translated into images in
which the interiors of surfaces are filled with solid color.

x

x

y ≥ x y + 1

Figure 7. The labeling scheme(see Williams [23]) is a simple set of cons-
traints on the depths of the four boundary segments that meet at a cros-
sing. If every crossing in a labeling honors the labeling scheme then the
labeling is legal and can be rendered.x is the depth of the upper boun-
dary. The upper boundary must have the same depth on both sides of
the crossing.y is the depth of the unoccluded half of the lower boun-
dary. The lower boundary must have a depth ofy + 1 in the occluded
region (shaded), as defined by the upper boundary’s sign of occlusion.
Finally, the lower boundary must reside beneath the upper boundary,
thus, y must be greater than or equal tox.

DEMONSTRATION OF DRUID
Fig. 8 demonstrates howDruid is used.Druid uses closed B-
splines to represent the boundaries of surfaces. Spline con-
trol points are defined in either a clockwise order to crea-
te solids(A) or in a counter-clockwise order to createholes
(C). Crossings can be clicked to reverse the relative depths
of overlapping subregions (B andD). This is called aflip.

Note that there is a natural logic to the operations in Fig.
8. For example, to alter the depth ordering of various over-
lapping subregions, the user merely clicks on a crossing to
invert its crossing-state.Druid then does all of the computa-
tion necessary to keep the labeling legal. This computation
consists of searching the space of legal labelings for a la-
beling which satisfies the constraint represented by the new
crossing state. Compare this mode of interaction with eit-
her the spoof approach associated with Stage 1 drawing pro-
grams or with the push-back approach associated with Sta-

ge 2 drawing programs,i.e., Real-Draw. Construction of a
spoof that appears likeD would be quite tedious. Worse yet,
to invert the relative depth ordering within a subregion, the
spoof would have to be completely rebuilt. InReal-Draw,
push-back objects would have to be explicitly created for
each desired subregion and would have to be maintained if
the user were to move the surfaces around.

Figure 8. Demonstration ofDruid. Spline control points are defined in
either a clockwise order to create solids (A) or in a counter-clockwise
order to create holes (C). Crossings are clicked to flip overlapping sur-
face subregions (B and D).

LABELED KNOT-DIAGRAM SPACES
Given an unlabeled drawingt ∈ T in the space of all possible
drawingsT, there exists a set of possible labelings that can be
assigned to that drawing,L(t ∈ T). C(t) ⊆ L(t) is the subset
of L consisting ofconsistent(or legal) labelings. When the
user causes a change to the drawing,Druid must searchL(t)
for a new legal labeling,i.e., an instance ofC(t).

The organization of the search process is motivated by the
primary goal of finding theminimum-difference labeling
with respect to the labeling prior to the interaction. The
user communicates his intent by specifying a single cons-
traint on the new labeling.Druid then deduces the remai-
ning constraints by searching for a legal labeling that satis-
fies the user’s explicit constraint. In this way,Druid deduces
the user’s intentions automatically, thereby minimizing the
user’s effort.

Graph Distance Between Labelings
For drawings of a moderate sizeL can be extremely large
given that we wantDruid to perform fast enough to not an-
noy the user. Fast feedback is an important aspect of direct
manipulation interfaces. Norman and Draper argue that fast
feedback reduces the user’s awareness of the computer as

a barrier between themselves and the drawing. In our case,
this contributes to the user’s perception that he is interacting
with real surfaces (see Norman and Draper [15]).

0 0 0

[0-1]

[0-1]

00

[0-1]

[0-1]

[0-1]

[0-1]

[0-1]

[0-2]

[0-2]
[0-2]

0

[0-1]

Figure 9. For a particular labeled knot-diagram, each boundary seg-
ment has a range of possible depths that it can assume, depending on
how many surface subregions it overlaps. The size ofL for each of the
three drawings shown from left to right is 1, 16, and 110592 respective-
ly. This figure illustrates the fact that the size ofL scales explosively
relative to the complexity of the drawing.

Calculating the Depth Ranges for a Labeled Knot-Diagram
The depth range that each boundary segment can assume
must be calculated before the figure can be labeled. To solve
this problem we have framed the task of finding the depth
ranges for all segments for a particular topology as a new
kind of labeling problem, similar to the labeling problem dis-
cussed earlier. The challenge is to label a knot-diagram in the
fashion shown in Fig. 9, where crossing-states remain unspe-
cified but all segments have a range of possible depths asso-
ciated with them. Thisrelaxed labeling problem(Fig. 10) is
similar to the original labeling problem where the goal is to
assign a single index to each segment. However, in a rela-
xed labeling the index is thedepth rangefor a segment,i.e.,
the maximum depth that a segment can assume among all
topologically valid labelings. We have devised an iterative
algorithm that determines the depth ranges by acting direct-
ly on the knot-diagram in a series of iterative passes, starting
from depth zero and accumulating maximum depths for the
segments incrementally.

x + 1

x

x + 1xA B

C

D

Figure 10. The relaxed labeling schemeis a set of constraints on the
depth ranges of the four boundary segments that meet at a crossing.
Each boundary occludes the half-plane on its right. Thus, for the two
boundaries meeting at a crossing, one half of each boundary will lie in
the unoccludedhalf-plane of the opposing boundary, and the other half
will lie in the potentially occludedhalf-plane of the opposing boundary.
The shaded regions in the figure show the potentially occluded half-
planes of each boundary. SegmentsB and C are potentially occluded.
The labeling scheme requires that the potentially occluded segments of
a crossing have a depth range that is one greater than the depth range
of the unoccluded segments and that the two boundaries have the same
depth ranges as each other.

EDITING 21/2D SCENES
Note thatDruid is much more than just an editor for labeled
knot-diagrams. In a simpler program, a user might manually

edit crossing-states and segment depths without constraint.
There are two major problems with this approach. The first
is that many of the knot-diagrams a user might create would
be illegal and could not be rendered. Thus, the burden would
fall upon the user to carefully manage the knot-diagram at
all times. The second problem is that the interface for such
a program would provide affordances that are not isomor-
phic with those of 21/2D scenes. The user would not have
the experience that he is editing a 21/2D scene, but rather the
experience that he is managing the details of a labeled knot-
diagram. To summarize, by virtue of its use of constraint
propagation,Druid is actually an editor for 21/2D scenes,
not for labeled knot-diagrams.

Unlike Druid, Real-Drawbasically is an editor for its in-
ternal representation, a global DAG with localized regions
specifying local DAG changes. The manipulations the user
performs inReal-Drawequateedit distancesof one with
representation distancesof one. Therefore, the user is di-
rectly manipulatingReal-Draw’srepresentation. This design
is awkward, since there are situations where realizing the
user’s intentions may require navigating a large representa-
tion distance to travel a small21/2D scene transformation
distance.

Druid’s power derives from its ability to quickly search
through the space of labeled knot-diagrams for legal labe-
lings. The reason the user has such a qualitatively different
experience when usingDruid is that elemental scene trans-
formations can be accomplished with single mouse clicks.
It is this isomorphism between editing operations and 21/2D
scene transformations that makesDruid so novel.

USER INTERACTIONS
Several possible user interactions were listed at the begin-
ning of this paper. The effects of these interactions on the
labeled knot-diagram can be grouped into two major catego-
ries:

• Labeling-preserving interactions
• Interactions requiring relabeling.

Labeling-preserving interactionsare interactions in which
the topology of the labeled knot-diagram does not change.
In constrast,interactions requiring relabelingare of the fol-
lowing types:

• Drags or reshapes that create new crossings
• Drags or reshapes that delete existing crossings
• Drags or reshapes that change the order of existing cros-

sings along the boundaries
• Change of the crossing-state of a crossing (“flipping” a

crossing)
• Change of the sign occlusion of a boundary (flipping a

sign of occlusion).

In the following sections we describe how these two kinds
of interactions are handled byDruid.

Labeling-Preserving Interactions
Ideally, Druid should preserve the labeling during user in-
teractions whenever possible because we assume that the
user does not want the labeling to change arbitrarily whi-
le he is editing a drawing. When one boundary is dragged
over another, the crossings involved in both will move. The
goal of preserving the crossings’ states during such interac-
tions precludes the naive method of deletion and rediscove-
ry of crossings since such an approach would destroy the
crossing-states, and the knot-diagram would have to be re-
labeled. While relabeling can generally be performed fairly
quickly, it is also crucial that the labeling following a non-
topology-altering interaction match the labeling prior to the
interaction. Because there is no way of guaranteeing that the
crossing-states discovered after relabeling will match the old
crossing-states, the naive method is infeasible. The only al-
ternative is to avoid the relabeling whenever possible.

Iteration 5

stationary
boundary

Iteration 1

A

a

Iteration 2

B

b

Iteration 3

C

c

Iteration 4

D

Iteration 0

original
intersection
location

d

moving
boundary
before
jump

moving
boundary
after
jump

Figure 11. The sequence of drawings shown here illustrate successi-
ve iterations of the crossing projection algorithm. Thick line segments
show the segment pair associated with the crossing at the beginning of
each iteration. Circles show the intersections of the lines containing the
segments. Lowercase labeled segments (a-d) show the segment that will
be switched out of the pair assignment at the end of that iteration. Up-
percase labeled segments (A-D) show the segment that will be switched
into the pair assignment at the end of an iteration. After a timestep, the
algorithm tests the original segments assigned to the crossing (shown
in Iteration 1). In the example illustrated, the segments no longer inter-
sect. Since the error (the distance past the end of each segment to the
point of intersection of the lines containing the segment pair) is greater
for the moving boundary at the beginning of Iteration 1, the moving
boundary segment assigned to the crossing’s segment-pair assignment
will be switched from a to A. The process continues until a pair of seg-
ments is found that actually intersect, as shown at the beginning of Ite-
ration 5.

For some interactions,e.g., drags and reshapes which do not
alter the topology, the labeling can be preserved by projec-
ting crossings along the paths they follow on the boundaries
(Fig. 11). The process of projecting crossings to their new
locations during a move or reshape of a boundary is called
crossing projection. The goal is to analyze and follow the
path that a crossing follows around a boundary. This algo-
rithm is relatively complex because there are a number of
special cases that must be properly detected and handled,
e.g., the appearance of new crossings or the disappearance
of existing crossings. It is also possible for crossings to pass

one another on a boundary as a result of a user interaction.
Projection is accomplished primarily by following a cros-
sing from one segment to the next around a boundary until
the crossing’s new location is determined, (Fig. 11).

User Interactions Requiring Relabeling
While some user interactions do not require relabeling, other
interactions cause changes to the knot-diagram’s topology,
and therefore, require a search for a new legal labeling. De-
vising an algorithm that can find the minimum difference
labeling quickly is difficult because the search space may be
extremely large relative to the complexity of the drawing.
The process for relabeling a labeled knot-diagram is descri-
bed in the next section.

FINDING A LEGAL LABELING
When the user causes a change that invalidates the current
labeling,Druid must find a minimum difference legal labe-
ling as quickly as possible. We will describe how this is ac-
complished in the case of acrossing flipuser-interaction,i.e.,
the user clicks on a crossing to flip its crossing-state, and in
doing so, inverts the depth order of the two subregions asso-
ciated with that crossing.

When the user clicks on a crossing to flip its crossing-state,
he imposes a constraint that is inconsistent with the present
labeling.Druid then searches for a legal labeling that satis-
fies the user’s constraint. This will often require changes on
the labeling, such as the crossing-states of other crossings or
the depths assigned to various boundary segments. Thus, the
search solves aconstrant-satisfactionproblem were the user
specifies the initial constraint.

Constraint-Propagation
The search takes the form of aconstraint-propagationpro-
cess similar to Waltz filtering (see Waltz [21]). Waltz’s
research illustrated how certain combinatorially complex
graph-labeling problems can be reduced to unique solutions
through a process called constraint-propagation. In a graph-
labeling problem, when one vertex of a graph is labeled, this
constrains adjacent vertices, which in turn propagate their
own constraints deeper into the graph. By means of this pro-
cess, it is often the case that an apparently ambiguous labe-
ling problem can be reduced to a single consistent labeling.

Boundary Traversal During the Search
In Druid, constraints are applied as the search process ex-
plores the labeling space through a set ofboundary traver-
sals. A boundary traversal begins at an arbitrary location on
a boundary with a specified depth and visits each segment on
the boundary, until it returns to the starting location. The pur-
pose of performing a boundary traversal is to test the traver-
sal’s legality using thezero integration rule. This rule gua-
rantees that a traversal ends at the same depth that it started
at, which is a requirement of a legal labeling.

Note that once a boundary traversal has begun, the depth
changes that occur during the traversal are uniquely determi-
ned. There are only three situations which can occur when a
traversal reaches a crossing:

• If the boundary being traversed is on top at the crossing,
the depth does not change.

• If the boundary being traversed goes under at the crossing,
the depth increases by one.

• If the boundary being traversed comes up at the crossing,
the depth decreases by one.

While the differences in depth around a boundary are un-
iquely determined, the depth of the initial segment of the
traversal is constrained, but not uniquely. The depth of the
initial segment must be within its depth range, as shown in
Fig. 9, but since any depth in this range might be the depth
of the optimum solution, all depths in the range must be te-
sted. This is accomplished by calling the boundary traversal
process within a loop that enumerates the possible depths for
the initial segment.

At this point, we have described how a single boundary tra-
versal is effected, and we have specified that the goal of a
boundary traversal is to test the boundary with the zero in-
tegration rule. Next we will describe how the boundary tra-
versal process is invoked with the context of a larger tree-
search which performs multiple boundary traversals during
the course of the search for a minimum difference labeling.

Structuring the Search
The search for a minimum difference labeling is a depth first
search. Each of the possible depths for the initial segment
of a traversal is the root of a distinct search tree. The search
trees branch when a boundary reaches a crossing; each of the
two crossing states is the root of a distinct subtree.

The decision about which boundaries are traversed during
the search is managed using thetouched boundary list, a
list of boundaries that have been crossed during the traversal
of other boundaries. As boundaries are crossed, ortouched,
they are appended to the end of the touched boundary list.
The touched boundary list is initially seeded with all boun-
daries that are illegal,i.e., all boundaries that have at least
one illegal crossing. In the case of a crossing flip, the flipped
crossing will initially always be illegal.

The following is a description of the entire backtracking
search process. An empty touched boundary list is seeded
with all illegal boundaries. The next boundary to be traver-
sed is then chosen from the front of the touched boundary
list. This boundary is then traversed repeatedly within a loop
which enumerates each of the possible depths for the initial
segment of that boundary.

As the traversal visits each crossing of a boundary, the cros-
sed boundaries are appended to the touched boundary list.
When all combinations of crossing-states for all crossings
on the traversal boundary have been enumerated, a traversal
is completed. If the traversal satisfies the zero integration ru-
le, the traversal process restarts with the next boundary on
the touched boundary list. If the traversal ends illegally the
process backtracks to the last unflipped crossing, flips that
crossing’s state, and continues.

If a traversal ends legally and there are no more boundaries
on the touched boundary list, the search has reached a leaf, or
a potential solution,i.e., a legally labeled figure. The solution
is assigned a score based on its difference from the prior
labeling.

When the entire depth range for the initial segment has be-
en enumerated, the next boundary on the touched boundary
list is selected. When the search is completed, the solution
with the lowest difference relative to the labeling prior to the
search is accepted. The new labeling is then displayed and
the user can initiate a new interaction.

The difference between labelings discovered by the back-
tracking search process and the prior labeling increases un-
der two circumstances:

• When a crossing is flipped
• When a segment depth differs from its original depth.

OPTIMIZING THE SEARCH
Because of the large size of the search space, searching for
the minimum-difference labeling might take a considerable
amount of time. Therefore, we employ a number of stra-
tegies in an effort to find the minimum-difference labeling
quickly enough to provide the user with a reasonable tur-
naround time. The strategies are broken down into three ma-
jor classifications:

• Choosing good boundary traversal starting segments
• Bounding the search using the current minimum diffe-

rence to avoid a full enumeration of the search space
• Ordering the search to produce tight search bounds based

on minimum difference earlier rather than later.

Choosing good boundary traversal starting segments
Each time an untraversed boundary is selected from the
touched-boundary list, that boundary is traversed within a
loop over the initial segment’s depth range. Naively, we
might choose the starting segment arbitrarily. However, Fig.
9 suggests a better strategy. It is highly advantageous to
choose a segment on the boundary with the minimum depth
range for the entire boundary as the starting segment.

Bounding the search
The difference between a candidate labeling found during
the search and the labeling prior to the search is accu-
mulated, oneδ at a time, during the search process as
the boundary-traversal algorithm branches–either preserving
features of the labeling (δ = 0) or altering them (δ = 1).
The sum of allδ ’s between two labelings is termedL∆. No-
tice that the accumulatedδ can never decrease and that it
is possible to exploit this fact during the search to improve
performance by bounding.

As the search proceeds, candidate labelings will be found,
and theirL∆ will be known. This value can be used to im-
prove the efficiency of the remaining search. SinceL∆’s can-
not decrease as subtrees are expanded, there is no reason to

expand a subtree that has already accumulated anL∆ greater
than that of the best solution found so far.

Ordering the Search
Bounding the search works best if we can find a solution
with a tight bound early in the search. Because certain la-
belings have a better chance of being optimal, we order the
search so that those labelings are likely to be explored first.

There are a number of criteria we can use to judge whether
or not a potential labeling is a good candidate for early ex-
pansion. We assume that the user expects most changes to
occur within a relatively small region surrounding the loca-
tion of the user specified constraint. This region is termed
thearea of interest.

If we order the search so that regions of the search space wi-
thin the area of interest are explored first, then we can effec-
tively enumerate all possible labelings which differ from the
prior labeling only within the area of interest before consi-
dering labelings which differ from the prior labeling outside
of this area. Ordering the search in this manner has two be-
nefits. First, it most likely reflects the user’s intent. Second,
the number of potential changes in a compact area is signi-
ficantly smaller than the number of potential changes in the
entire drawing, so we will find any solutions where changes
are restricted to that area much more rapidly than we would
find solutions where changes are unrestricted.

We search regions near the area of interest early in the search
process by executing the depth first search described above
within aniterative deepeningloop, which is commonly used
in game tree search algorithms (see Marsland [9]). We do
this by calculating, in advance, the graph distance between
each crossing and the crossing in the center of the user’s area
of interest. We then perform the depth first search in a loop
where the search horizon increases by one after every itera-
tion. As a boundary is traversed to test the zero integration
rule, no crossings beyond the current horizon are expanded.

Not only does iterative deepening expand subtrees corre-
sponding to crossings within the area of interest first and
which are therefore more likely related to the user’s goal, but
it also finds labelings with smallL∆’s which provide stronger
bounds early, which increases the efficiency of the branch
and bound search.

The following table shows sample running times for some
crossing-flips. Interactions A and B are toggles back and
forth of the bridge between the two halves of the anthropo-
morphic figure in the top left drawing of Fig. 14. Interactions
C and D are toggles back and forth of the overlapping letters
’U’ and ’I’ in the top right drawing of Fig. 14. Interactions
E and F are toggles back and forth of one of the overlapping
regions for the drawing in Fig. 13. These running times we-
re collected on a 1.6 GHz G5 Powermac and represent nine
trials each.

Interaction Edges Traversed Median seconds
A 8734 .62
B 6707 .68
C 575 .04
D 1435 .09
E 1463 .19
F 1463 .19

In summary, we observe thatDruid’s response time to a cros-
sing flip interaction for typical drawings is consistently less
than one second.

BOUNDARY GROUPING WITH CUTS
One feature that is common to almost all drawing programs
is the ability to group objects together. Groups are usual-
ly provided so that transformations like translation, scaling,
and rotation can be applied to all of the members of a group.
Boundary groups are not required forDruid to legally label
a drawing. However, boundary groups provide a basis for
translation of a surface with multiple boundaries, and mo-
re importantly, can be used to eliminate ambiguities about
which surfaces boundaries belong to. For example, in Fig.
12 (left), there exists an ambiguity as to whether boundary
B bounds a surface below boundary A, above boundary A,
or is part of the same surface as boundary A. If a the user
were to attempt to place a third boundary that overlaps the
ambiguous surface of A and B, there is the possibility that
the third surface might be placedbetweenboundaries A and
B. Clearly, if the user’s intent is for boundaries A and B to
be part of the same surface, then such a placement violates
the user’s expectations about the effects of his interactions.
Grouping boundaries can minimize this kind of problem.

Cut Gap

A

B

Figure 12. A cut can be thought of as a scissor cut through a sur-
face connecting two boundaries of that surface. Cuts are used to group
boundaries together for group transformations like translation, scaling,
and rotation.

Druid automatically finds and maintains boundary groups
without requiring any input from the user. It does this by
finding and maintainingcuts. A cut can be thought of as a
scissor cut through a surface connecting two boundaries that
belong to a single surface. A cut converts two boundaries of
a surface into a single boundary. See Fig. 12 (center, right).
If a cut can be found between the two boundaries, as shown
in Fig. 12, then the two boundaries are demonstrably part of
the same surface and can be grouped.

Observe that the discovery of a cut between two boundaries
effectively connects the two boundaries into a single closed
boundary. Cuts effectively reduce the number of boundaries
in a drawing, by one per cut. Consequently, they reduce the
overall complexity of a drawing, thereby reducing the size of
the search space and making the search significantly faster.

RENDERING
There are parallels between the approach used inDruid to
render labeled knot-diagrams and algorithms used for hid-
den surface removal in computer graphics,e.g., the Weiler-
Atherton algorithm [22]. Rendering consists of converting
the labeled knot-diagram (Fig. 13, left) to an image with so-
lid fills for contiguous bounded regions of the canvas. To
render opaque surfaces, we only need to find the depth zero
surface for each region (Fig. 13, center). However, to render
transparent surfaces we must find the full depth ordering of
all surfaces for each region so that a transparent coloring mo-
del, such as Metelli’sepiscotistermodel (see Metelli [11]),
can be applied (Fig. 13, right).

Figure 13. A labeled knot-diagram (left) can be rendered into a surface
rendering such as those shown above (center, right). The surfaces asso-
ciated with each region must be determined so that a proper coloring
for that region can be assigned to the final image.

CONCLUSIONS
All drawing programs must have a way to distinguish which
surface is on top for any overlapping pair of subregions. Exi-
sting drawing programs solve this problem by assigning sur-
faces to distinct layers in depth. Consequently, interwoven
sets of surfaces cannot be represented, thus precluding dra-
wings of a large class of 21/2D scenes. We have developed
an innovative new drawing program with the following ma-
jor capabilities:

• Naturally representing a more general class of drawings,
i.e., drawings in which surfaces interweave

• Providing user-interactions in the form of user specified
constraints which are automatically propagated to main-
tain topological validity of the representation.

Specific contributions of this work are as follows:

• Use of labeled knot-diagrams as the basis for a more ge-
neral drawing tool capable of representing drawings of in-
terwoven surfaces

• Development of a method for projection of the locations
of crossings of surface boundary components after move
and reshape interactions

• Development of a relaxation method for determining
depth ranges for boundary segments in a labeled knot-
diagram based representation

• Development of a branch and bound search method for
efficiently finding minimum difference labelings with re-
spect to the labeling preceding a user action

• Introduction of the notion of cuts for representing surfaces
with multiple boundary components and for reduction of
the search space.

Figure 14. Shown above are several examples of artwork created with
Druid. The construction and maintenance of these drawings is simple
and straightforward.

Druid uses a more general surface representation than is
used by existing drawing programs. It represents surfaces by
their closed boundaries and only maintains local constraints
on the ways in which boundaries can cross one another. The-
se local constraints do not impose a global layering on the
elements of the drawing and therefore permit the constructi-
on of scenes of interwoven surfaces.

Additionally, Druid’s interface provides the natural affor-
dances of 21/2D scenes in that actions performed by the user
are isomorphic to elemental transformations of 21/2D sce-
nes. UsingDruid is easy because it operates in a way which
is consistent with a user’s intuition about physical surfaces.
its affordances minimize the effort required of the user and
decrease the time required to construct complex drawings.

REFERENCES
1. Adobe Illustrator,c©2005 Adobe.

2. Baudelaire, P., and M. Gangnet, Planar Maps: An
Interaction Paradigm for Graphic Design,Proc. of CHI,
1989.

3. Coreldraw,c©2005 Corel.

4. Craig, D., LisaDraw 3.0 manual, 1984.

5. Gibson, J. J.,The Ecological Approach to Visual
Perception, Houghton Mifflin Co., Boston, MA, 1979.

6. Gleicher, M., Briar: A Constraint-Based Drawing
Program,Proc. of CHI, Monterey, CA, 1992.

7. Huffman, D. A., Impossible Objects as Nonsense
Sentences,Machine Intelligence, 6, 1971.

8. iDraw, c©2005 MacPowerUser.

9. Marsland, T. A., and M. Campbell, Parallel Search of
Strongly Ordered Game Trees,ACM Computing
Surveys, 14 (4), pp. 533-551, 1982.

10. McGrenere, J., and W. Ho, Affordances: Clarifying and
Evolving a Concept,Graphics Interface, pp. 179-186,
May 2000.

11. Metelli, F., The Perception of Transparency,Scientific
American, 230(4), pp. 90-98, 1974.

12. Myers, B. A., A Brief History of Human Computer
Interaction Technology,ACM Interactions, 5 (2), pp.
44-54, 1998.

13. Norman, D. A., Affordance, Conventions, and Design,
ACM Interactions, pp. 38-43, 1999.

14. Norman, D. A.,The Design of Everyday Things, Basic
Books, 2002.

15. Norman, D. A., and S. W. Draper,User Centered
System Design: New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale,
NJ, 1986.

16. Raisamo, R., and K-J Räihä, Techniques for Aligning
Objects in Drawing Programs, Department of
Computer Science, Univ. of Tampere, Technical Report
A-1996-5.

17. Sato, T., and B. Smith, Xfig User Manual, 2002.
http://xfig.org/userman/

18. Scharein, R. G.Interactive Topological Drawing. PhD
dissertation, University of British Columbia, 1998.

19. Sutherland, I. E., Sketchpad: A Man-Machine
Graphical Communication System, PhD dissertation,
Cambridge Univ., 1963.

20. Voska, R., Real-Draw manual, pp. 67-72, 2003.
http://www.mediachance.com/files/RealDrawPDF.zip

21. Waltz, D. L., Understanding Line Drawings of Scenes
with Shadows, McGraw-Hill, New York, pp. 19-92,
1975.

22. Weiler, K., and P. Atherton, Hidden Surface Removal
Using Polygon Area Sorting,ACM SIGGRAPH, pp.
214-222, 1977.

23. Williams, L. R.,Perceptual Completion of Occluded
Surfaces, PhD dissertation, Univ. of Massachusetts at
Amherst, Amherst, MA, 1994.

