
Representation of Interwoven Surfaces in 21/2 D Drawing

Keith Wiley
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131 USA

505-277-7836
505-277-6927 (fax)
kwiley@cs.unm.edu

Lance R. Williams
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131 USA

505-277-3914
505-277-6927 (fax)

williams@cs.unm.edu

February 16, 2007

Abstract

The state-of-the-art in computer drawing programs is based on a number of concepts that are over two
decades old. One such concept is the use of layers for ordering the surfaces in a 21/2D drawing from top
to bottom. A 21/2D drawing is a drawing that depicts surfaces in a fundamentally two-dimensional way,
but also represents the relative depths of those surfaces in the third dimension. Unfortunately, the current
approach based on layers unnecessarily imposes a partial ordering on the depths of the surfaces and
prevents the user from creating a large class of potential drawings,e.g., of Celtic knots and interwoven
surfaces.

This paper describes a novel approach which only requires local depth ordering of segments of the
boundaries of surfaces in a drawing rather than a global depth relation between entire surfaces. Our
program,Druid, provides an intuitive user interface with a fast learning curve that allows a novice to
create complex drawings of interwoven surfaces that would be extremely difficult and time-consuming
to create with standard drawing programs.

1

Keywords: J.6.a Computer-aided design

Author Bios

Keith Wiley recieved the BA degree in psychology from the University of Maryland in 1997 and the MS
and PhD degrees in computer science from the University of New Mexico in Albuquerque in 2003 and
2006, respectively. He is currently a lecturer in the Computer Science Department at the University of
New Mexico in Albuquerque. His principal research interests are image processing, CCD imaging, and
evolutionary algorithms and simulations.

Lance R. Williams recieved the BS degree in computer science from Pennsylvania State University in 1985
and the MS and PhD degrees in computer science from the University of Massachusetts at Amherst in 1988
and 1994, respectively. He spent four years as a post-doctoral scientist at NEC Research Institute. He is
now an associate professor in the Computer Science Department at the University of New Mexico in Albu-
querque. His principal research interests are human visual information processing, perceptual organization
for artificial vision systems, and neural computation.

2

1 Introduction

1.1 Summary of Existing Drawing Programs

Drawing programs originated with Sutherland’s seminal Ph.D. thesis in 1963, in which many recognizable
components of modern drawing programs were already present (see Sutherland [23] and Sutherland [24]).
Since then, a number of refinements have been made to the general design of drawing programs, aided
primarily by increased computing power and hardware and software innovations such as the mouse and
graphical user interface toolkits. In 1984, Apple releasedLisaDraw 3.0(see Craig [9]), which despite
its age, still serves as a model of a modern drawing program. It uses a tool palette that is similar to the
tool palettes of modern drawing programs and which provides similar functionality. However, its method
of representating the relative depths of surfaces has not been improved upon in twenty years, despite its
intrinsic weaknesses. For the last twenty years, research on drawing programs has focused on areas other
than the nature of the surface representation. For example, a considerable amount of research has focused
on methods for constructing objects and manipulating their shape, but once constructed, those objects are
assigned depths in a conventional layer-based drawing representation. One area in which considerable
progress has been made is the intelligent interpretation ofsketches, i.e., imprecise hand drawings which
are analyzed to discover salient features. For example,CorelDRAW 12, a professional drawing program,
provides asmart drawing tool, which allows a user to freehand draw approximate shapes that are recognized
and fitted to stock shapes such as ellipses (see Corel [8]). Barla,et al. describe a method of line drawing
simplification which either removes or merges extraneous lines without losing the salient features of the
drawing (see Barlaet al. [4]). Gangnetet al. describe a method for closing gaps in freehand curves, which
is important for paint-fill algorithms (see Gangnetet al. [11]). In addition, some work has focused on
interpreting two-dimensional sketches as three-dimensional shapes. Both Karpenko [14] and Cordier and
Seo [7] describe systems which convert hand-drawn sketches into volumetric models. In addition, Raisamo
[20] describes a novel way to construct shapes in which a block is chiseled, similar to three-dimensional
sculpting, rather than defined using explicit boundaries such as splines. While the previous work on drawing
programs is significant and valuable, it all relies on a layer-based representation for the relative depths of
surfaces, and this representation has serious limitations.

One function of a drawing program is to allow the construction and manipulation of drawings of overlapping
surfaces, which we simply call21/2D scenes. A 21/2D scene is a scene of surfaces that is fundamentally
two-dimensional, but which also represents the relative depths of those surfaces in the third dimension,i.e.,
the absolute position of a surface in the third dimension is not indicated, only the relative depths of pairs
of surfaces are. Using existing programs, a drawing can easily be constructed in which multiple surfaces
partially overlap. When this occurs, the program must have a means of representing which surface is on top
wherever two surfaces overlap. Existing drawing programs solve this problem by representing drawings as a
set of distinct layers where each surface resides in a single layer. For any given pair of surfaces, the one that
resides in the upper (or shallower) layer is assigned a smaller depth index and appears above wherever those
two surfaces overlap. Consequently, the use of layers imposes a partial ordering, or a directed acyclic graph
(DAG), on the surfaces such that no subset of surfaces can interweave (Fig. 1). This restriction precludes

3

many common drawings which a user may wish to construct (Fig. 2), specifically, it those drawings that
containinterwoven surfaces, i.e., pairs of surfaces for which each surface is above the other somewhere in
the scene. Because such programs do not span the full space of possible 21/2D scenes, they therefore impose
limitations on the drawings that a user can create.

Our research uses a more general representation as the basis for a more powerful drawing tool, called
Druid (see Wiley and Williams [27]).Druid eliminates the assumption that surfaces cannot interweave. It
therefore spans a larger space of 21/2D scenes by using a representation that makes weaker assumptions
about the drawing. This generality makesDruid a more versatile drawing tool.

1.2 Previous Research

It is important to realize thatDruid is not merely a Celtic knot tool. Many researchers have studied the
construction of Celtic knots (e.g., Cromwell [10] and Scharein [22]) and several programs are specifically
designed to facilitate the construction of knots in general (e.g., [1, 3, 6, 22, 29]).Druid, on the other hand,
permits the construction of much more general scenes in which the surfaces can be any orientable two-
manifold with boundary. In particular, there exist scenes of interwoven surfaces which are not knots,e.g.,
Fig. 2 (a andb). Neither conventional drawing programs nor programs for constructing knots can represent
such scenes.

Perhaps the research that most closely resemblesDruid is that by Baudelaire and Gangnet [5], which relies
on planar mapsas the organizing principle for a drawing tool andmap-sketchingas a means to construct
21/2D scenes. Planar maps permit the construction of overlapping curve segments, which are subsequently
pruned using a process where some edges are erased. Each face of the graph (an edge-bounded region of
the surface boundary graph) can be assigned an independent color in the drawing. With a proper erasure of
edges and coloring of faces, an illusion of interwoven surfaces can be achieved. Baudelaire and Gangnet’s
planar maps are quite similar to the best method available inAdobe Illustrator[2] for constructing 21/2D
scenes1 in which the user converts a series of overlapping curves into a planarized graph in which the faces
can be assigned independent colors. As such, the Baudelaire method is simply theIllustrator method with an
additional (and unnecessary) edge-erasing interaction, although their research predates the implementation
of this feature inIllustrator. We describe this planar map method for constructing interwoven scenes in
detail in Section 3.3.

A more significant deficiency of the planar map method is that it does not possess the naturalaffordances
of 21/2D scenes. Affordances are the natural uses an object suggests for itself (see Norman [17, 18]). For
example, a mouse affords translational movement and clicking. 21/2D scenes afford 21/2D manipulations
such as being stretched, translated, cut into smaller surfaces, having holes cut in them, and being lifted above

1This is the best method that isnativelyavailable inAdobe Illustrator. There are third-party plugins that facilitate the construc-
tion of a specificsubsetof interwoven scenes,i.e., Celtic knots (see Artlandia [3]). However, these systems do not span the full
space of 21/2D scenes and do not provide naturalaffordances.

4

A

B C

D
E

F

A

B

C

D

CA

B

D

F

E

D

B

A

C

Figure 1: The classic approach to representing relative surface depths is to assign the surfaces to distinct
layers (top left). It follows that the surface relative depth relation is a directed acyclic graph (DAG). No
subset of surfaces can interweave because this would require a cycle in the graph (top right). This approach
precludes interwoven drawings (bottom left) in which the surface relative depth relation has cycles (bottom
right).

5

or pushed beneath one another in portentially interwoven arrangements. We believe that a 21/2D drawing
program should have a user interface with affordances isomorphic to those of 21/2D scenes.

2 Drawing Programs

2.1 Drawing Program User-Interactions

Many drawing programs provide tools for creating and manipulating splines. One such program,MacPowerUser’s
iDraw [15], bases all objects on splines. Rectangles, polygons, and text are all represented using splines.
This provides a consistent interface for manipulating the various kinds of objects. LikeiDraw, Druid is
based entirely on splines and like bothivtools idraw[13] andXfig [21], Druid uses B-splines. All boundaries
are B-splines, including shapes that can be approximated by splines, such as hand-drawn curves, rectangles,
and text. The assumption that all boundaries are splines lends a uniformity to a drawing program’s interface
that makes it easier for a user to understand, while simulaneously simplifying the programmer’s job. There
are a number of user-interactions that a spline-based drawing program should permit. These interactions
include:

• Create a new boundary
• Delete a boundary
• Smoothly reshape a boundary
• Drag a surface (drag all of its boundaries)
• Add or remove spline control points
• Increase or decrease spline degree
• Reverse a boundary’ssign of occlusion(discussed later)
• Reverse the depth ordering where two surfaces overlap.

The interface of a program should not only provide a method for each of these interactions; these methods
must beuser-friendly, that is, simple to understand and easy to use. Unfortunately, the only previous attempt
to circumvent the partial ordering limitation,MediaChance’s Real-Draw Pro 3(see Voska [25]), forces the
user to use a complex and confusing interface.

2.2 Software Affordances

A software application’s interface possesses a specific set ofaffordances. According to Norman, affordances
are the clues an object offers about how it can be used (see Norman [17, 18]). There is a general agreement
that affordances are difficult to define with respect to software. This observation results from the fact that

6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Examples of artwork created withDruid. The construction and maintenance of these drawings is
simple and straightforward. Note that some of these drawings are mathematical knots (c, d, e, f) while the
rest are not (a, b, g, h, i).

7

affordances are usually defined with respect to physical properties of material objects. With this difficulty
in mind, we define the affordances of a user interface as the ways in which the user can interact with the
screen’s imagery, since for the most part, existing interfaces present a two dimensional image to the user
with which to interact. This interaction usually involves a keyboard and a mouse. However, in the case
of drawing programs, use of the keyboard is generally minimized because this violates the notion ofdirect
manipulation interfaces. A direct manipulation interface is an interface which allows the user to interact
with the depicted object using the most direct method possible given the I/O devices that are available (see
Norman [18]). Therefore, the affordances of drawing programs mainly consist of clicking on and dragging
various features,e.g., spline control points, of the display with a mouse and cursor.

In our design forDruid, we attempt to model our interface on a real physical system and then present the
affordances characteristic of that system to the user. The physical system that a drawing program depicts is
a 21/2D scene which the user can manipulate in ways that are appropriate for such scenes,e.g., altering the
shape and placement of surfaces, and altering the relative depths of the surfaces in areas of overlap.

Real physical surfaces possess certain natural affordances. They can be stretched, translated, cut into smaller
surfaces, have holes cut in them, and lifted above or pushed beneath one another in potentially interwoven
arrangements. They can also be colored or be made transparent. In some cases they can be glued to other
surfaces to form larger surfaces. We believe that an effective drawing program should provide a set of affor-
dances that is isomorphic to those of real surfaces. This amounts to a visual analogy between the program’s
usage and the thing depicted, in our case, 21/2D scenes. One example is translating a surface by “grabbing”
it with a hand-shaped cursor and then dragging it in the desired direction, which is directly analogous to how
a graphic designer might move pieces of paper around on a drafting board. Unfortunately, many drawing
programs do not possess isomorphic affordances. It is our belief that while some programs, such asReal-
Draw (see Voska [25]), attempt to solve the problems posed in this research, they do so using interfaces with
unnatural affordances which make the programs complicated and non-intuitive to use.Druid’s interface
possesses affordances which are isomorphic to the affordances of the physical surfaces which are depicted.
As such, it is simpler to use, while at the same time, is more powerful than existing drawing programs in its
capability to create and manipulate complex 21/2D scenes.

3 Comparison Between Conventional Drawing Programs andDruid

3.1 Constructing Images of Interwoven Surfaces in Conventional Drawing Programs

With considerable effort, itis possible to create images with existing drawing programs that depict inter-
woven surfaces. However, the underlying drawing representation in such cases is not, and cannot be, truly
interwoven. Three ways of achieving this effect are:

1. Spoofs

8

2. Painting planarized graphs
3. Local DAG manipulation.

In this section we describe each of these methods in detail.

3.2 Spoofs

One method for constructing an image of interwoven surfaces without using an interwoven representation is
to construct one set of surfaces which has the appearance of a completely different set of surfaces. We call
this sort of illusion aspoof (Fig. 3). Spoofs represent non-generic configurations, where various elements
of a drawing are precisely aligned in order to create the illusion of interwoven surfaces.

(2) Paste.

(1) Start with the right ring on the
bottom. Copy just the right ring
in the selected rectangle.

(3) Place the spoof precisely
 over its original position,
 on top of both rings.

(4) The spoof is brittle. If either
ring is moved, the spoof breaks.

Figure 3: A spoof is a process by which the illusion of interwoven surfaces is constructed in a layered
system. The underyling representation does not match the final rendered image.

9

3.3 Painting Planarized Graphs

Another method for constructing an image that has the appearance of interwoven surfaces ispainting pla-
narized graphs, which was briefly discussed in Section 1.2. This method consists of converting a drawing
of boundaries that represent overlapping surfaces into a planar graph where vertices represent boundary
crossings and edges represent boundary segments (Fig. 4, top left). Once the drawing has been converted
to a planar graph, each face of the graph can be independentlypainted(or filled) with a color of the user’s
choosing (Fig. 4, bottom right). With a proper assignment of paint colors to the faces of the graph, an image
can be constructed which has the appearance of interwoven surfaces (Fig. 4, bottom right).

Figure 4: Painting a planarized graph begins by representing a set of boundaries as a planar graph (top left).
The graph can be colored by painting faces of the graph with a fill color (top right). By careful assignment of
paint colors to the faces of the graph, an image can be constructed which has the appearance of interwoven
surfaces (bottom right).

10

3.4 Local DAG Manipulation

To our knowledge, the only program that makes a serious attempt to solve the problem of representing
interwoven surfaces isMediaChance’s Real-Draw Pro-3(see Voska [25]).Real-Drawstarts out with a
basic layered representation, but then provides a special device called apush-back object. This device lets
the user define a region of the canvas where the partial ordering can be locally altered. The layer that resides
at depth zero within the selected region can be pushed down to an arbitrary depth, placing it beneath some
or all of the (previously) deeper layers. Although the depth ordering of surfaces below the surface that is
at depth zero by default cannot be altered, this operation is sufficient to create most kinds of interwoven
images (Fig. 5, top).

3.5 Affordances of Conventional Drawing Programs

One might ask, if spoofs, painting planarized graphs, and local DAG manipulation are sufficient methods
for creating rendered images of interwoven surfaces, what difference does it make if the underlying repre-
sentation of the drawing does not correspond to the 21/2D scene which is perceived? Our answer lies in an
analysis not of thecapabilityof these methods (these methods are fully capable of creating images which
are perceived as interwoven surfaces), but in the unnaturalness and labor intensiveness of these methods.
Spoofs are tedious to construct, requiring many steps to be performed with precision. Furthermore, they are
brittle because once a spoof has been constructed, any alterations to the drawing will require the spoof to be
redone. Likewise, planarizing a drawing followed by painting the faces of the graph independently requires
many intermediate steps which must be performed in a precise manner in order to achieve the desired ef-
fect. The point is not that layer-based systems are unnatural (they represent layered scenes perfectly), it is
that they are not general,i.e., there are 21/2D scenes which cannot be represented using layers and whose
appearance is difficult to simulate using a layer-based system.

The push-back tool used byReal-Draw(see Voska [25]) is the easiest of the three methods listed above, but
it is not ideal. One problem withReal-Draw’sapproach is that it relies on the use of a new kind of object
on the canvas, the push-back object. Because the push-back object does not operate in the way in which
humans perceive and reason about surfaces, it does not possess thenaturalaffordances of 21/2D scenes (see
Section 2.2).

Additionally, the presence of a push-back object on the canvas makes the user’s job more tedious because
it must be kept properly aligned with the surfaces it is associated with. If the user adjusts the locations of
surfaces that are associated with a push-back object, the user must also adjust the location and scale of the
object to make sure it still encompasses the relevant region of the canvas. Furthermore, the introduction of
new surfaces into an existing push-back object’s region requires that the old push-back object be replaced.
We believe that labeled knot-diagram-based representations (as used byDruid) offering better affordances,
and which make fewer demands on the user, are a better solution.

11

Figure 5:Real-Draw(see Voska [25]) provides a device called apush-backobject, which allows the user to
define a region of the canvas and then manipulate the ordering of the layers within that region. The top two
figures illustrate how this manipulation is accomplished. Notice thatReal-Drawcannot properly represent
self-overlapping surfaces (bottom figure). Since a surface has only one label in the surface layer list, there
is no way to manipulate the relative depths where a single surface covers a region at multiple depths. For
this reason,Real-Drawcannot represent self-overlapping surfaces. The overlapping region is rendered with
empty space, as shown in the bottom figure.

12

A possibly more significant drawback than possessing unnatural affordances is thatReal-Drawdoes not span
the space of 21/2D scenes. There are two situations where this can arise. The first situation occurs when
the user attempts to create a surface that overlaps itself. A single label is used to represent each surface
in the global surface DAG, even when that surface overlaps itself. Since a push-back object only allows
the reordering of layers based on labels in the DAG, there is no way for a push-back object to represent
or manipulate self-overlapping surfaces. The primary cause of this problem is that the push-back object
presents an interface for manipulatinglocal DAGs, but the surface labels remain properties of aglobal
DAG. In summary, the dependence on an underlying DAG is a fundamental deficiency inReal-Draw’s
representation (Fig. 5, bottom).

An additional problem withReal-Drawis that since the push-back object only allows the depth zero object
to be pushed down, there is no way to manipulate the ordering of deeper layers. If surfaces are opaque
this does not matter since only the depth zero surface will be visible. However, if surfaces are transparent,
then the ordering of deeper layers might affect the appearance of a region where multiple surfaces overlap
(depending on the exact transparency model used). In theory, the basic idea of a push-back object could
be extended to allow a more comprehensive manipulation of the surface depths. However, the more serious
problem of self-overlapping surfaces would remain unaddressed.

3.6 Demonstration ofDruid

To this point, this section has illuminated the weaknesses inherent in constructing images of interwoven
21/2D scenes with conventional drawing programs. In this section, we offer a demonstration of howDruid
is used to perform this task for the purpose of comparison (see Fig. 6). Spline control points are defined
in either a clockwise order to create solids (A) or in a counter-clockwise order to create holes (B andD).
Crossings can be clicked to reverse the relative depths of areas where surfaces overlap (C andE). We call
this interaction acrossing-flip. Whenever the current labeling islegal, i.e., whenever all crossings satisfy the
labeling scheme, the drawing can berendered(F).

Note that there is a natural logic to the operations in Fig. 6. For example, to alter the depth ordering of
various overlapping surfaces, the user merely clicks on a crossing to invert its crossing-state.Druid then
does all of the computation necessary to keep the labeling legal. This computation consists of relabeling
the figure so that the constraint represented by the new crossing-state is satisfied and the entire figure is
legal. Compare this mode of interaction with either the spoof approach or with the local DAG manipulation
approach,i.e., the approach employed byReal-Draw. Construction of a spoof that appears likeE would be
quite tedious. Worse yet, to invert the relative depth ordering within an overlapping area, the spoof would
have to be completely rebuilt. If one were to useReal-Draw, push-back objects would have to be explicitly
created for each desired region of overlap and would have to be maintained if the user were to move the
various surfaces around.

13

Figure 6: Demonstration ofDruid. Spline control points are defined in either a clockwise order to create
solids (A, numbers denote control point order) or in a counter-clockwise order to create holes (B andD).
Crossings are clicked to flip overlapping surface regions (C andE). Whenever the drawing is legally labeled
(B - E), the figure can be rendered (F rendersE). In this example, the surface has been made partially
transparent.

14

4 Druid’s Representation: Labeled Knot-Diagrams

In Section 3 we described three methods by means of which images of interwoven surfaces could be con-
structed using conventional drawing programs. We then described how these methods could be improved
upon by the use of a more general representation,i.e., one which makes no assumption of layers. At the
end of Section 3 we demonstrated our system,Druid. In this section we describeDruid’s representation,
the labeled knot-diagram. We then describe a set of natural constraints called thelabeling scheme, which
govern the ways in which surface boundaries appear in 21/2D scenes.

4.1 Labeled Knot-Diagrams

In order to build a drawing tool that is capable of naturally representing interwoven surfaces, it is necessary
to develop a fundamentally new representation for drawings.Druid represents the boundaries of surfaces in
a localized way that does not assume surfaces’ depths correspond to a DAG. It does this by exploiting the
fact that local depth changes only occur at surface boundary crossings.

Our system,Druid, represents a 21/2D scene as alabeled knot-diagram(see Williams [28]). Aknot-diagram
is a projection of a set of closed curves onto a plane and indicates which curve is above wherever two curves
intersect (Fig. 7, top left). Williams extended ordinary knot-diagrams to include asign of occlusionfor
every boundary and adepth indexfor every boundary segment (Fig. 7, top right). The sign of occlusion
is illustrated with an arrow and denotes a bounded surface to the right with respect to a traversal along the
boundary in the arrow’s direction. It is interesting to note that Williams applied knot-diagrams not to the
construction of drawings representing 21/2D scenes, but to the inverse problem of understanding existing
21/2D scenes,i.e., computer vision.

4.2 Labeling Scheme

The process of assigning a labeling to a knot-diagram is similar to Huffman’s notion ofscene-labeling(see
Huffman [12]), in which he developed a system for labeling the edges of a scene of stacked blocks. In
Druid’s case, the labeling consists of signs of occlusion, crossing-states, and segment depth indices. The
labeling schemeis a set of local constraints on the relative depths of the four boundary segments that meet
at a crossing (Fig. 7, bottom). There are four rules of the labeling scheme:

1. The upper boundary must have the same depth on both sides of the crossing.
2. The lower boundary must differ in depth by exactly one across the crossing.
3. The lower boundary must be deeper on the occluding side of the upper boundary.

15

0

1

1

1

11

1

1
1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

0

0

0

0

0

0

1

0

0

1

x

x

y ≥ x y + 1

Figure 7: A knot-diagram(top left) is a projection of a set of closed curves onto a plane together with
indications which show which curve is on top at every crossing. Alabeled knot-diagram(top right, see
Williams [28]) is a knot-diagram with a sign of occlusion for every boundary and a depth index for every
boundary segment. Arrows show the signs of occlusion for the boundaries, always denoting a surface
bounded to the right of a boundary with respect to travel along the boundary in the direction of the arrow.
The sign of occlusion can also be denoted using hash marks. Some depth indices of depth zero have been
omitted for clarity. Thelabeling scheme(bottom, see Williams [28]) is a simple set of constraints on the
depths of the four boundary segments that meet at a crossing. If every crossing in a labeling satisfies
the labeling scheme then the labeling is alegal labelingand can be rendered. Section 4.2 describes the
constraints imposed by the labeling scheme.

16

4. The lower boundary must be no shallower than the upper boundary on the unoccluding side of the
upper boundary.

With respect to the labeling scheme shown in Fig. 7 (bottom) the constraints are as follows:x is the depth
of the upper boundary; the upper boundary must have the same depth on both sides of the crossing.y is the
depth of the unoccluded half of the lower boundary; the lower boundary must have a depth ofy + 1 in the
occluded region (shaded), as defined by the upper boundary’s sign of occlusion; finally, the lower boundary
must reside beneath the upper boundary,i.e., y must be greater than or equal tox.

If every crossing in a labeled knot-diagram satisfies the labeling scheme, the labeling is alegal labelingand
accurately represents a scene of topologically valid surfaces. Legal labelings can berendered, i.e., translated
into images (discussed in Section 11) in which the interiors of surfaces are filled with solid color.

While the labeling scheme is sufficient to describe all 21/2D scenes, it does not make explicit all useful
relationships between the elements of a drawing,i.e., some elements of a drawing may not be entirely inde-
pendent of other elements. Knowledge of such relationships could be used to improveDruid’s performance.
In Section 6, we describe one relationship between drawing elements which we call thecrossing-state equiv-
alence class rule. By exploiting this rule,Druid is able to quickly relabel drawings in a way which would
otherwise be impossible. This method of relabeling is far superior to alternative methods, such as searching
for a new labeling, which is described in the next section.

5 Finding a Legal Labeling

For a given knot-diagram there are numerous possible labelings. However, only a small subset of those will
be legal,i.e., will satisfy the labeling scheme at all crossings and therefore represent a topologically valid
21/2D scene.Druid attempts to maintain a legal labeling at all times. The task oflabelinga drawing consists
of searching the space of all possible legal labelings for the labeling that most likely corresponds to the
user’s intent. However, in many situations,Druid does not need to discover anewlabeling, it simply needs
to relabelan existing drawing which has become illegal in a localized region due to a user-interaction,e.g., a
crossing-flip. Section 2.1 introduced a number of drawing program user-interactions. These can be grouped
into three categories:

• Labeling-preserving interactions – drags or reshapes in which the topology of the knot-diagram does
not change

• Interactions requiringlabeling– interactions which create or destroy crossings, or which change the
order of existing crossings along the boundaries, resulting in a topological change,e.g., drags, re-
shapes, and sign of occlusion flips

• Interactions requiringrelabeling– interactions which alter crossing-states or boundary segment depths,
but preserve the current topology,e.g., crossing-flips.

17

We will discuss labeling-preserving interactions in Section 7.2. In this section we describe howDruid
handles interactions which requirelabeling; interactions which requirerelabelingare described in Section
9.2. Labeling and relabeling are almost always performed with respect to the labeling that existed prior to
the interaction. In both cases, the primary goal is to find theminimum-difference labelingwith respect to the
prior labeling because we believe that this labeling will most likely match the user’s intent. Both labeling
and relabeling can be accomplished through alabeling search. However, we will show in Section 9.2 that
relabeling can often be accomplished without resorting to a search, resulting in a considerable increase in
efficiency.

5.1 Constraint-Propagation

The search takes the form of aconstraint-propagationprocess similar to Waltz filtering (see Waltz [26]).
Waltz’s research illustrated how certain combinatorially complex graph-labeling problems can be reduced
to unique solutions through a process called constraint-propagation. In a graph-labeling problem, when one
vertex of a graph is labeled, this constrains adjacent vertices, which in turn propagate their own constraints
deeper into the graph. By means of this process, it is often the case that an apparently ambiguous labeling
problem can be reduced to a single consistent labeling.

5.2 Boundary Traversal During the Search

As the search process explores the labeling space,Druid propagates constraints through a set ofboundary
traversals. A boundary traversal begins at an arbitrary location on a boundary at a hypothesized depth and
visits each segment on the boundary until it returns to the starting location. The purpose of performing a
boundary traversal is to test the traversal’s legality using thezero integration rule. This rule guarantees that
a traversal ends at the same depth that it started at, which is a requirement of a legal labeling. Note that once
a boundary traversal has begun, the depth changes that occur during the traversal are uniquely determined.
It is in this way that depth constraints propagate around a boundary. There are only three situations which
can occur when a traversal reaches a crossing:

• If the boundary being traversed is on top at the crossing, the depth does not change.
• If the boundary being traversed goes under at the crossing, the depth increases by one.
• If the boundary being traversed comes up at the crossing, the depth decreases by one.

While the differences in depth around a boundary are uniquely determined, the depth of the initial segment
of the traversal is constrained, but not uniquely. Consequently, all possible depths for the initial segment
must be tested. This is accomplished by calling the boundary traversal process within a loop that enumerates
the possible depths for the initial segment.

18

5.3 Structuring the Search

The primary goal of the search process is to find theminimum-difference labelingwith respect to the prior
labeling because we believe that this will most likely match the user’s intent. The search is a depth-first
search in which each of the possible depths for the initial segment of a traversal is the root of a distinct
search tree. The search trees branch when a boundary reaches a crossing; each of the two crossing states is
the root of a distinct subtree.

The decision about which boundaries are traversed during the search is managed using thetouched boundary
list, a list of boundaries that have been crossed during the traversal of other boundaries. As boundaries are
crossed, ortouched, they are appended to the end of the touched boundary list. The touched boundary list is
initially seeded with all boundaries that are illegal,i.e., all boundaries that have at least one illegal crossing.
The following is a description of the entire backtracking search process:

• An empty touched boundary list is seeded with all illegal boundaries. The next boundary to be tra-
versed is then chosen from the front of the touched boundary list. This boundary is then traversed
repeatedly within a loop which enumerates each of the possible depths for the initial segment of that
boundary.

• As the traversal visits each crossing of a boundary, the crossed boundaries are appended to the touched
boundary list. When all combinations of crossing-states for all crossings on the traversal boundary
have been enumerated, a traversal is completed. If the traversal satisfies the zero integration rule, the
traversal process restarts with the next boundary on the touched boundary list. If the traversal ends
illegally the process backtracks to the last unflipped crossing, flips that crossing’s state, and continues.

• If a traversal ends legally and there are no more boundaries on the touched boundary list, the search
has reached a leaf, or a potential solution,i.e., a legally labeled figure. The solution is assigned a score
based on its difference from the prior labeling.

• When the entire depth range for the initial segment has been enumerated, the next boundary on the
touched boundary list is selected. When the search is completed, the solution with the lowest differ-
ence relative to the prior labeling is accepted. The new labeling is then displayed and the user can
initiate a new interaction.

• The difference between labelings discovered by the backtracking search process and the prior labeling
increases whenever expanding a node in the search tree requires flipping a crossing.

5.4 Branch-and-Bound Tree Search

The search process takes the form of a branch-and-bound depth-first search in which expanding a node
consists of either preserving a crossing’s state or flipping it. As the search descends into the search tree, a
total difference (L∆) with respect to the prior labeling is accumulated. Expanding a node adds a localδ of
0 (if the crossing-state is preserved) or 1 (if it is flipped) to the cumulativeL∆. Since theL∆ that is being

19

accumulated during tree-descent can never decrease (δ can never be negative), we know that it represents
a lower bound on the finalL∆ of all leaves in the subtree below the current node. Therefore, assuming that
a solution has been found already, we can truncate the search at any internal search tree node where the
current cumulativeL∆ equals this global bound. The search process then backtracks and tries a different
path.

5.5 Optimizing the Search Through Iterative Deepening

To further optimize the search process,Druid attempts to confine changes to the drawing to thearea-of-
interest, i.e., the area of the drawing near where the user is interacting. This strategy not only better reflects
the user’s intent, it also helps find a tighter bounds earlier.Druid confines changes to the area-of-interest
by applying an iterative deepening loop. Given a drawing with a set of illegal crossings (e.g., such as the
drawing that directly precedes a labeling search), each legal crossing’s graph distance in the knot-diagram to
the nearest illegal crossing is calculated. To apply iterative deepening during the search process,Druid only
considers flipping crossings whose graph distance lies within the currenthorizon. If the search terminates
with no legal solutions, the horizon is increased and the search is repeated. In this way,Druid considers
all combinations of crossing-flips within a steadily increasing horizon before considering any crossing-flips
beyond the horizon.

A labeling search is required after interactions that alter the drawing’s topology. However, when merely
relabeling after a nontopological change, such as a crossing-flip, a labeling search is unnecessary. Instead,
the minimum-difference labeling can be directly deduced. The method for directly deducing a new labeling
is described later in this paper and makes use of a property of 21/2D scenes which we call thecrossing-state
equivalence class rule. In fact, this rule can also be applied to the labeling search to vastly improve the
efficiency of the search.

6 Crossing-State Equivalence Classes

In this section we describe a topological property of 21/2D scenes which we call thecrossing-state equiva-
lence class rule. Druid uses this rule to relabel knot-diagrams represented 21/2D scenes rapidly.

6.1 Definition of Key Concepts

Fig. 8 shows a 21/2D scene of interwoven surfaces. A section of a boundary joining two crossings is termed
a boundary segment. We observe that the canvas is partitioned by boundary segments into disjointregions.
In Fig. 8, the regions of the canvas are labeled with letters. We observe that zero or more surfaces (numbered

20

in Fig. 8) cover every region. For example, surfaces1 and3 cover regionk while surfaces1, 2, and3 cover
regionm.

a

b c
d

e
f g

h

i

j

k

m
n o

p

q

1

2
3

Figure 8: An interwoven 21/2D scene. Regions are labeled with letters, surfaces with numbers, and crossing-
state equivalence classes with shapes.

To define and prove the crossing-state equivalence class rule, we first define the following terms:

• A superregionis a set of contiguous regions covered by a single surface. For example, in Fig. 8,{b,
g, h, n} is a superregion of surface2.

• A borderof a superregion is the set of boundary segments which define its perimeter.
• A shared superregionis the maximum superregion common to two surfaces,e.g., {g, m} is a shared

superregion of surfaces1 and2.
• A cornerof a shared superregion is a crossing where adjacent boundary segments of the border belong

to different surfaces. In Fig. 8, corners corresponding to the shared superregion{m, n} common to
surfaces2 and3 are marked with circles.

The corners of a shared superregion comprise thecrossing-state equivalence classfor that shared superre-
gion. Notice that every crossing in a drawing is a corner of some shared superregion. Consequently, every
crossing is a member of some crossing-state equivalence class.

6.2 Reducing General 21/2D Scenes to Simple 21/2D Scenes

A simple surfaceis a surface with a single boundary component which does not intersect itself,i.e., aJordon
curve. For every 21/2D scene, there is a corresponding 21/2D scene where all surfaces are simple. We call
a 21/2D scene comprised solely of simple surfaces asimple 21/2D scene. The fact that any 21/2D scene

21

can be reduced to a simple 21/2D scene is significant because our proof of the crossing-state equivalence
class rule applies only to simple 21/2D scenes. Two steps are required to reduce a general 21/2D scene to a
simple 21/2D scene. First, any surface with multiple boundary components must be converted into a surface
with a single boundary component. Second, any self-overlapping surfaces must be converted into a set of
non-self-overlapping surfaces (see Fig. 9).

We perform both surface conversions usingcuts. A cut can be thought of as a scissor cut through a surface
connecting two boundaries that belong to a single surface. When a cut connects two boundaries, those
boundaries are joined into a single boundary component (Fig. 9, top). Likewise, a self-overlapping surface
with a single boundary component can be cut into multiple smaller surfaces which abut along cuts and such
that no surface self-overlaps (Fig. 9, bottom).

cut

A

B

A

B

A

cut

A

B

Figure 9: A cut is a line connecting two boundaries or connecting two locations on a single boundary.
Any surface with multiple boundary components can be converted into a surface with a single boundary
component by connecting them with a cut (top). Alternatively, any self-overlapping surface can be converted
into a set of abutting non-self-overlapping surfaces using a cut (bottom).

6.3 The Crossing-State Equivalence Class Rule

Let X andY be the two surfaces whose boundaries intersect at a crossing. We observe that the crossing can
only be in one of two states. Either surfaceX is above surfaceY or surfaceY is above surfaceX.

TheoremAll crossings in a crossing-state equivalence class must be in the same state.

Proof We first prove the above theorem for simple surfaces. Because any 21/2D scene can be reduced to a
simple 21/2D scene (see Section 6.2), this suffices to prove the theorem in the general case. We begin by

22

observing the following:

• We observe that for every region there is a total depth ordering of the surfaces which cover that region.
• The total depth ordering of adjacent regions is identical except for the addition or deletion (depending

on the sign of occlusion) of the surface whose boundary segment separates the two regions.
• It follows that the relative depth of two surfaces in adjacent regions remains the same if the boundary

segment which divides the regions belongs to neither surface.
• It follows that the relative depth of two surfaces is constant within a shared superregion.
• The relative depth of the two surfaces whose boundaries intersect at a crossing is the same as the

relative depth of those surfaces in the region they corner.

Consequently, the relative depth ordering of two surfaces at every crossing in a crossing-state equivalence
class must be the same.�

For example, in Fig. 8, consider the superregion{m, n} shared by surfaces2 and3. The only segment
interior to the superregion is part of the boundary of surface1. Therefore, the relative depths of surfaces2
and3 cannot change along that boundary segment.

What the crossing-state equivalence class rule tells us is that the crossing-states of certain sets of crossings
are entirely interdependent,i.e., they represent a single variable in the labeled knot-diagram. We will show
howDruid exploits this rule in Section 9.

7 Editing 21/2D Scenes

7.1 21/2D Scene Editors vs. Drawing Representation Editors

Unlike Druid, Real-Draw is essentially an editor for its internal representation,i.e., a global DAG with
localized regions specifying local DAG changes. The manipulations the user performs inReal-Drawequate
edit-distancesof one withrepresentation distancesof one. An edit-distance is the total number of mouse
clicks and keystrokes necessary to transform one drawing representation into another. A representation
distance is the minimum number of elemental transformations (changes in which a single parameter is
altered) that are necessary to transform one representation into another. Editing the internal representation
is not necessarily the best possible design for a drawing tool; there are situations where the user’s intention
may require navigating a large representation distance consisting of many elemental changes to achieve a
small 21/2D scene transformation. This long sequence of operations is tedious and distracts the user from
his larger goals. The main problem is that the actions of the user do not correspond to transformations of the
scene, they correspond to transformations of the drawing representation. Consequently, the affordances of
Real-Draware not isomorphic with those of 21/2D scenes. To summarize, althoughReal-Drawrepresents a

23

genuine improvement over spoofs, it still requires more operations than would be necessary using a program
which provides the natural affordances of 21/2D scenes.

In contrast,Druid provides an interface not for directly editing its internal representation, but instead of edit-
ing the thing its representation depicts,i.e., 21/2D scenes.Druid’s power derives from its ability to quickly
relabel a knot-diagram following a user-interaction. It presents the user with the experience of directly inter-
acting with a 21/2D scene (including scenes containing interwoven surfaces), rather than the experience of
interacting with a scene that merely resembles the desired scene,i.e., creating a spoof. The reason the user
has such a qualitatively different experience when usingDruid is that elemental transformations on 21/2D
scenes can be accomplished with single mouse clicks. It is this isomorphism between editing operations and
21/2D scene transformations that makesDruid so novel.

Several possible user-interactions were listed in Section 2.1 and grouped into three categories in Section
5: labeling-preserving interactions, interactions requiring relabeling, andinteractions requiring relabeling.
In the next section we describe howDruid handles labeling-preserving interactions. We will describe how
Druid handles interactions requiring labeling or relabeling in Section 9.

7.2 Labeling-Preserving Interactions

Ideally, Druid should preserve the labeling during user-interactions whenever possible because doing so
provides a sense of continuity for the user. Labeling changes should only occur as the result of explicit
constraints that the user specifies. At all other times, the labeling must be preserved so the user can maintain
control over the drawing process.

When one boundary is dragged over another boundary, the crossings belonging to both boundaries will
move. The goal of preserving the crossings’ states during such interactions precludes a naive approach like
deleting and rediscovering crossings since such an approach would destroy the crossing-states, thus invali-
dating the labeling. While relabeling can be performed fairly quickly, efficiency is not the only concern; it
is also crucial that the labeling following a non-topology-altering interaction match the labeling prior to the
interaction. Because there is no way of guaranteeing that the newly assigned crossing-states will match the
old crossing-states, the naive approach is infeasible. The only alternative is to avoid relabeling whenever
possible.

For some interactions,e.g., drags and reshapes which do not alter the topology, the labeling can be preserved
by projecting crossings along the paths they follow on the boundaries, a process termedcrossing-projection.
The goal is to explicitly compute the path that a crossing follows around a boundary. The algorithm is
illustrated in Fig. 10, where the user has dragged one boundary to the right. Observe that the boundary
moves in discrete jumps, from one location to another, and not continuously. These discrete jumps result
from two factors. The first is that there is a latency between mouse-generated hardware interrupts, during
which the mouse will drag a shape an unspecified distance. The second factor is that spline control points

24

only reside at pixel coordinates.

The crossing-projection algorithm is invoked each timeDruid receives a mouse interrupt notifying it that
a boundary’s location or shape has been altered. All crossings that the boundary’s movement affects are
immediately projected to their new locations. Note that crossing-projection is performed individually on
each affected crossing.

Crossing-projection is trivial if a crossing remains on the same two boundary segments after a boundary
moves to its new location. If a crossing’s two boundary segments still intersect after a drag or reshape is
performed, then projecting the crossing is simply a matter of updating the coordinates for the crossing. If the
two original segments of the crossing no longer intersect after the boundary is moved, then a more complex
crossing-projection algorithm must be employed, in which a new pair of boundary segments which intersect
are identified and the coordinates of the new point of intersection are calculated.

Fig. 10 illustrates how a single crossing is projected. It illustrates a case in which the projection process
is complicated because the crossing has traversed many segments on both boundaries. Given a pair of
segments belonging to a crossing that no longer intersect (shown at the beginning of Iteration 1 as a pair of
bold segments), the algorithm enters a loop. Each iteration of this loop updates the segment-pair assignment
for the crossing by reassigning one of the two boundary segments and preserving the other. The loop
terminates when the currently assigned pair of boundary segments intersect.

Observe that between iterations in Fig. 10, one boundary segment is retained while the other boundary
segment switches to the adjacent segment on its boundary that is closest to the current intersection. The
decision about which segment to retain is made by measuring the two errors of the crossing with respect to
the two segments. The error for a segment is the distance between the crossing and the nearest end of that
segment. For example, at the beginning of Iteration 1, the error is less for the stationary boundary but at the
beginning of Iteration 2 the error is less for the moving boundary.

The loop repeats until the pair of boundary segments actually intersect, as shown at the beginning of Iteration
5. The new location of the crossing is then calculated and the crossing has been successfully projected to its
new location.

Crossing-projection helps to avoid unnecessary relabeling, but when the knot-diagram’s topology changes,
relabeling is required. The relabeling method is described in Section 9.

8 Labeling Running Time

While equivalence classes can be exploited to rapidly relabel a previously labeled figure, there is also the
issue of how much time is required to initially label a figure following a topological change. To address this

25

Iteration 5

stationary
boundary

Iteration 1

A

a

Iteration 2

B

b

Iteration 3

C

c

Iteration 4

D

Iteration 0

original
crossing
location

d

moving
boundary
before
jump

moving
boundary
after
jump

Figure 10: The sequence of drawings shown here illustrates successive iterations of the crossing-projection
algorithm. Thick line segments show the boundary segment pair associated with the crossing at the be-
ginning of each iteration. Circles show the intersections of the lines containing the boundary segments.
Lowercase labels (a - d) indicate the boundary segment that will be switched out of the pair assignment at
the end of that iteration. Uppercase labels (A - D) indicate the boundary segment that will be switched into
the pair assignment at the end of an iteration. After a timestep, the algorithm tests the original boundary
segments assigned to the crossing (shown in Iteration 1). In the example illustrated, the boundary segments
no longer intersect. Since the error (the distance past the end of each segment to the point of intersection of
the lines containing the segment pair) is greater for the moving boundary at the beginning of Iteration 1, the
moving boundary segment assigned to the crossing’s segment-pair assignment will be switched froma to
A. The process continues until a pair of boundary segments is found that actually intersect, as shown at the
beginning of Iteration 5.

26

question we performed an experiment in which we constructed a series of drawings of increasing complexity.
The labeling time was then calculated relative to a particular drawing’s complexity. To construct this series
of drawings we repeatedly introduced a new surface into a drawing in a systematic manner. Fig. 11 shows
the last drawing in a series of drawings used to measure labeling performance. We began with a figure
consisting of only the upper left surface shown in Fig. 11 and steadily introduced new surfaces until the
figure shown had been constructed. At each intermediate stage we measured the time required to label the
figure after the introduction of the new surface. We conducted two experiments, one to measure randomized
labeling and the other to measure incremental labeling. Randomized labeling is performed on azeroed
labeling,i.e., one in which all boundary segment depths have been set to zero, all equivalence classes have
been destroyed, and all crossing-states have been randomized. In contrast, incremental labeling preserves
the prior labeling and its equivalence classes, and merely labels the new elements of a drawing,i.e., new
crossing-states and boundary segments, followed by discovery of new equivalence classes. We observe that
incremental labeling is more characteristic of howDruid is actually used. Results for randomized labeling
are only provided for the purpose of comparison.

Fig. 12 shows a plot of the labeling performance relative to the total number of crossings in the figure. We
observe that the performance of the randomized method scales exponentially in the number of crossings.
In contrast, the performance of the incremental method scales linearly. Note that these results will not
necessarily be representative ofDruid’s behavior for all drawings. However, we believe that this experiment
provides some indication ofDruid’s performance when labeling. Note that the number of trials conducted
varies across the test set. We ran ten trials for every incremental test, but for the randomized tests, we
increased the number of trials as the number of crossings increased. This was necessary because the labeling
performance exhibited a high variance when there were many crossings. This high variance resulted from
the fact that the labeling performance is highly dependent on the initial zeroed state. For some zeroed states
the labeling process finds a solution quickly while for others, it takes a long time. In contrast, the incremental
method performs precisely the same way every time, and therefore yields extremely low variances across
the test set.

9 Exploiting Crossing-State Equivalence Classes

9.1 Exploiting Crossing-State Equivalence Classes as a Search Constraint

In Section 5 we described howDruid performs a branch-and-bound constraint-propagation search to find a
new labeling following a topological change. Crossing-state equivalence classes provide an additionalnon-
local constraint that can be exploited during the search process. Any partial labeling that occurs during the
search which violates the equivalence class rule must be illegal and can therefore be immediately eliminated
from consideration.

During the search process, crossing-states may be flipped. Without knowledge of the equivalence class rule,

27

Figure 11: For the labeling running time experiment, we constructed a drawing of a single cigar-shaped
surface (as if only the upper left surface were present in the figure shown). This drawing was then repeatedly
modified by adding an identical cigar-shaped surface to the drawing, thus uniformly increasing the drawing’s
complexity. We performed this process nineteen times, resulting in twenty total drawings. The last drawing
is shown.

28

0 10 20 30
Number of Crossings

0.001

0.01

0.1

1

10

Ti
m

e
(s

)

Randomized
Incremental

Figure 12: Labeling time vs. number of crossings. We observe that the randomized method performs worse
than linear in the number of crossings but that the incremental method performs in a linear time in the
number of crossings. Note that time is plotted on a log axis. The number of trials conducted varies across
the test set. For all incremental tests, ten trials were conducted. For randomized tests with zero to eighteen
crossings, ten trials were conducted, for those with twenty to thirty crossings, thirty trials were conducted,
and for those with thirty-two to thirty-eight crossings, seventy trials were conducted. We increased the
number of trials for the randomized tests in which there were many crossings because the variance tended
to be very high in those experiments. This high variance was due to the large number of possible zeroed
states the labeling process could start from,i.e., a labeling process starting from one zeroed state might find a
solution must faster than a labeling process starting from a different zeroed state. In contrast, the incremental
method performs precisely the same way every time, and therefore yields extremely low variances across
the test set. Errors bars show 95% confidence interval.

29

this method of search would spend a lot of time considering labelings that are guaranteed to be illegal due to
a violation of the equivalence class rule. To use equivalence classes as a constraint,Druid flips equivalence
classes as a unit during the search process. If expanding a node in the search tree requires flipping a crossing,
all crossings in that crossing’s equivalence class are immediately flipped before proceeding with the search
process. In this manner, it is guaranteed that the partial labeling being considered conforms to the crossing-
state equivalence class rule at all times during the search. In practice, this additional constraint provides
significant gains to the search performance. In some situations, the search terminates 50 times faster as a
result of this constraint.

9.2 Exploiting Crossing-State Equivalence Classes to Directly Deduce a New Labeling

Some user-interactions, such as crossing-flips, do not result in a topological change. Following such interac-
tions, the minimum-difference labeling can be directly deduced without resorting to a labeling search.Druid
directly deduces the new labeling by propagating boundary segment dept-changes through the knot-diagram
away from the flipped equivalence class. In Section 5.5 we stated that it is preferable to confine the rela-
beling of boundary segment depths to the area-of-interest, the local area around a user-flipped equivalence
class. Propagating depth-changes away from flipped crossings rather than globally relabeling all boundary
segment depths will accomplish this goal.

Fig. 13 shows the two crossing-states for a single crossing. Observe that a crossing always has twopo-
tentially occludedsegments which may or may not be occluded at the crossing by the other boundary,
depending on the crossing-state (C andD), and twounoccludedsegments which can never be occluded at
the crossing by the other boundary (A andB). When a crossing is flipped, the depths of its two potentially
occluded segments will always change and the depths of its two unoccluded segments will never change.
Since the depths of the unoccluded segments do not change, the new depths for the potentially occluded
segments can be deduced directly by applying the labeling scheme to the flipped crossing-state and the two
unoccluded boundary segment depths. After deducing the new depth for a boundary segment, that boundary
segment’s depth is fixed and cannot be changed again during the propagation process. We say that such
a boundary segment isdepth-constrained. This constraint guarantees that the depth propagation process
always converges.

Druid’s relabeling method processes crossings in a FIFO2 queue. This queue is initially seeded with all
crossings in the flipped equivalence class. For each crossing in the queue,Druid assigns new boundary
segment depths to some of its four boundary segments in order to make the crossing legal. As described
above, the assignment of new boundary segment depths to the members of the equivalence class are uniquely
determined.

When the relabeling process assigns a new depth to a boundary segment, the propagation process must
propagate across that boundary segment to the next crossing. Thus, the next crossing is added to the queue.

2“first in, first out”

30

x

x x + 1

x

y y + 1 y y
A

B

C

D

Figure 13: For the two boundaries meeting at a crossing, one half of each boundary will lie in theunoccluded
half-plane of the opposing boundary (A andB), and the other half will lie in thepotentially occludedhalf-
plane of the opposing boundary (C andD). When a crossing is flipped,e.g., transformed from the state
shown at left to the state shown at right, the depths of its two potentially occluded segments will always
change (labeled in bold) and the depths of its two unoccluded segments will never change.

The effect of processing the propagation in a FIFO queue is that changes occur near all members of the
equivalence class equally early in the propagation process and then expand outward.

As new crossings are retrieved from the queue, some of the four boundary segments incident at those cross-
ings will be depth-constrained, as described above. The one exception to this rule will be the members of the
equivalence class, which will not have any depth-constrained boundary segments. However, as described
above, their new boundary segment depths will be uniquely determined. For all other crossings, the effect of
the propagation process is that at least one boundary segment will be depth-constrained. The unconstrained
depths of a crossing that the propagation process reaches are uniquely deduced by applying the labeling
scheme to the crossing’s state and the depth-constrained boundary segment depths.

10 Boundary Grouping With Cuts

One feature that is common to almost all drawing programs is the ability to group objects together. Groups
are usually provided so that transformations like translation, scaling, and rotation can be applied to all of the
members of a group. Although boundary groups are not required forDruid to legally label a drawing, they
can provide a basis for translation of a surface with multiple boundaries, and more importantly, can be used
to eliminate ambiguities about which surfaces boundaries belong to. For example, in Fig. 9 (top left), there

31

exists an ambiguity as to whether boundaryB bounds a surface below boundaryA, above boundaryA, or
is part of the same surface as boundaryA. If a user were to attempt to place a third boundary that overlaps
the ambiguous surface ofA andB, there is the possibility that the third surface might be placedbetween
boundariesA andB. Clearly, if the user’s intent is for boundariesA andB to be part of the same surface, then
such a placement violates the user’s expectations about the effects of his interactions. Grouping boundaries
can minimize this kind of problem.

Druid automatically finds and maintains boundary groups without requiring any input from the user. It does
this by finding and maintainingcuts(see Section 6.2). If a cut can be found between the two boundaries,
as shown in Fig. 9 (top), then the two boundaries are demonstrably part of the same surface and can be
grouped.

Observe that the discovery of a cut between two boundaries effectively connects the two boundaries into
a single closed boundary. Cuts effectively reduce the number of boundaries in a drawing, by one per cut.
Consequently, they reduce the overall complexity of a drawing.

11 Rendering

Rendering consists of converting the labeled knot-diagram (Fig. 7, top right, and Fig. 6,E) to an image
with solid fills for contiguous bounded regions of the canvas. To render opaque surfaces, we only need to
find the depth zero surface for each region (Fig. 2,a). However, to render transparent surfaces we must find
the full depth ordering of all surfaces for each region so that a transparent coloring model, such as Metelli’s
episcotistermodel (see Metelli [16]), can be applied (Fig. 2,g, and Fig. 6,F).

12 Future Work

12.1 Labeling with Crossing-State Equivalence Classes

Because equivalence classes can only be found on a legally labeled figure,Druid cannot use those equiva-
lence classes to label the figure initially. At any given time,Druid knows the equivalence classes that were
present in the drawing at the conclusion of the previous labeling attempt but does not have knowledge of any
equivalence classes created as a result of subsequent topological changes. However, even making limited
use of equivalence classes during labeling is highly beneficial because doing so significantly reduces the
complexity of the drawing. The necessity of having a legal labeling before equivalence classes can be found
can be problematic. For example, there are drawings for which the user must construct a complex configu-
ration of surface boundaries which cannot be incrementally labeled because no intermediate configurations

32

leading up to the goal configuration are legal. Consequently,Druid must label the final drawing without
having any knowledge of the equivalence classes in advance. Fig. 2 (i) shows such a drawing. Such a
labeling process can be prohibitively expensive because the drawing complexity may be very large. IfDruid
could find equivalence classes on an unlabeled figure, then it could fully apply equivalence classes to the
labeling process.

Finding equivalence classes for an unlabeledsimplescene is relatively easy to do. We have already devised
an algorithm that explores an unlabeled knot-diagram to discover adjacent corners of an equivalence class
(see Fig. 8). By taking the transitive closure of a set of adjacent corners, an equivalence class can be
established. Since this algorithm only works on simple scenes, finding equivalence classes on an unlabeled
general scene is tantamount to converting that general scene to a simple scene. In Section 6.2 we described
how general scenes can be converted into simple scenes by introducing cuts to split self-overlapping surfaces
into sets of abutting non-self-overlapping surfaces. While this method of converting general scenes to simple
scenes is valid in principal, we have yet to devise a practical method for finding the correct cuts to accomplish
this transformation. A crucial step toward in design of a system which can find equivalence classes on an
unlabeled figure is devising a method for finding the cuts which will convert a general scene into a simple
scene. Our preliminary research on this conversion process suggests that such cuts might have to follow a
curved path, whereas the cuts discussed previously have been exclusively straight.

13 Conclusion

All drawing programs must have a way to distinguish which surface is on top anywhere that two surfaces
overlap. Existing drawing programs solve this problem by assigning surfaces to distinct layers in depth.
Consequently, interwoven sets of surfaces cannot be represented, thus precluding a large class of potential
drawings. Since drawings should be able to depict any 21/2D scene, a drawing program should use a repre-
sentation that permits the construction of any 21/2D scene. Unfortunately, the assumption that most existing
drawing programs adopt is that surfaces reside in distinct layers. Since this assumption is not true of the
space of all possible 21/2D scenes, existing drawing programs cannot represent all 21/2D scenes. We have
developed an innovative new drawing program with the following major capabilities:

• Naturally represents a more general class of drawings than other programs,i.e., drawings in which
surfaces may interweave

• Provides user-interactions in the form of user specified constraints which are automatically propagated
throughout the drawing to maintain topological validity of the representation.

Specific contributions of this work are as follows:

• Use of labeled knot-diagrams as the basis for a more general drawing tool capable of representing
drawings of interwoven surfaces

33

• Development of a method for projection of the locations of crossings of surface boundary components
after move and reshape interactions

• Introduction of the notion of cuts for representing surfaces with multiple boundary components and
for reduction of the search space

• Introduction of the notion of slices for determining which surfaces contribute color to each region of
the canvas for the purpose of rendering

• Discovery of a topological property of 21/2D scenes which we call the crossing-state equivalence class
rule

• Development of a relabeling method which exploits the crossing-state equivalence class rule to rapidly
relabel a figure.

Druid uses a novel surface representation which makes it possible to represent a more general class of draw-
ings than is possible with existing drawing programs.Druid uses closed boundaries to represent surfaces. It
only maintains local constraints on the ways in which boundaries can cross one another. This local constraint
does not impose a global layering on the elements of the drawing and therefore permits the construction of
scenes of interwoven surfaces.

Additionally, Druid’s interface provides the natural affordances of 21/2D scenes in that actions that the user
performs are isomorphic to elemental transformations of 21/2D scenes. UsingDruid is easy because it
operates in a way which is consistent with a user’s intuition about real surfaces. Therefore, a user must learn
relatively few new skills in order to start usingDruid. Druid’s affordances minimize the effort required of
the user and decrease the time required to construct complex drawings.

References

[1] Knots3D, c©2006 Abbott, S.
http://www.abbott.demon.co.uk/knots.html

[2] Adobe Illustrator, c©2006 Adobe.
http://www.adobe.com/

[3] SymmetryWorks Adobe Illustrator plugin,c©2006 Artlandia.
http://artlandia.com/products/SymmetryWorks/

[4] Barla, P., J. Thollot, and F. Sillion, Geometric clustering for line drawing simplification,Siggraph
Technical Sketch: SIGGRAPH 2005, ACM, 2005.

[5] Baudelaire, P., and M. Gangnet, Planar maps: An interaction paradigm for graphic design,Proc. of
CHI, 1989.

[6] Clanbadge’s True Type fonts which represent square sections of a Celtic knotwork pattern,
c©Clanbadge 2006.

34

http://www.publishingperfection.com/clanbadge/

[7] Cordier, F., and H. Seo, Free-Form Sketching of Self-Occluding Objects,IEEE Computer Graphics
and Applications. 2007.

[8] Coreldraw graphics suite upgrade matrix, 2003.
http://www.corel.com/content/pdf/cdgs12/CDGSVersion to Versionmatrix.pdf

[9] Craig, D., LisaDraw 3.0 Manual, 1984.

[10] Cromwell, P. R. Celtic knotwork: Mathematical art,The Mathematical Intelligencer, 15 (1), pp.
36-47, 1993.

[11] Gangnet, M., J-M. Thong, and J-D. Fekete. Automatic gap closing for freehand drawing.Siggraph
Technical Sketch: SIGGRAPH 1994, ACM, 1994.

[12] Huffman, D. A., Impossible objects as nonsense sentences,Machine Intelligence, 6, 1971.

[13] ivtools team, idraw man page.
http://www.ivtools.org/ivtools/idraw-README.txt

[14] Karpenko, O., SmoothSketch: 3D free-form shapes from complex sketches,ACM SIGGRAPH, 2006.

[15] MacPowerUser team, iDraw 1.3.2 README, 2002. Available as part of the downloadable iDraw
package.
http://www.macpoweruser.com/downloads.html

[16] Metelli, F., The perception of transparency,Scientific American, 230(4), pp. 90-98, 1974.

[17] Norman, D. A., Affordance, conventions, and design,Interactions, pp. 38-43, 1999.

[18] Norman, D. A.,The Design of Everyday Things, Basic Books, 2002.

[19] Raisamo, R., and K-J R̈aihä, Techniques for aligning objects in drawing programs, Technical Report,
University of Tampere, Department of Computer Science, A-1996-5, 1996.

[20] Raisamo, R., An alternative way of drawing,Proc. of CHI, 1999.

[21] Sato, T., and B. Smith, Xfig User Manual, 2002.
http://xfig.org/userman/

[22] Scharein, R. G.Interactive Topological Drawing. Ph.D. dissertation, University of British Columbia,
1998.

[23] Sutherland, I. E., Sketchpad: A man-machine graphical communication system,Proc. of the 1963
Spring Joint Computer Conference, AFIPS, 23pp. 329-346, 1963.

[24] Sutherland, I. E., Sketchpad: A man-machine graphical communication system, Technical Report,
Univ. of Cambridge, UCAM-CL-TR-574, Sept, 2003. (This technical report is a modern republication
of Sutherland’s 1963 doctoral dissertation.)

35

[25] Voska, R., Real-Draw Manual, pp. 67-72, 2003.
http://www.mediachance.com/files/RealDrawPDF.zip

[26] Waltz, D. L., Understanding line drawings of scenes with shadows, McGraw-Hill, New York, pp.
19-92, 1975.

[27] Wiley, K. and L. R. Williams, Representation of interwoven surfaces in 2 1/2 D drawing,Proc. of
CHI, 2006.

[28] Williams, L. R.,Perceptual completion of occluded surfaces, Ph.D. dissertation, Univ. of
Massachusetts at Amherst, Amherst, MA, 1994.

[29] Celtic Knot Thingy (CKT), c©2006 Zongker, D.
http://isotropic.org/uw/knot/

36

