
Druid :
Representation of Interwoven

Surfaces in 21/2D Drawing

by

Keith Wiley

B.A., Psychology, University of Maryland College Park, 1997

M.S., Computer Science, University of New Mexico, 2003

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2006

c©2006, Keith Wiley

iii

Dedication

For my parents, who taught me to love science.

For Aleta, who inspired me.

For Angie, who always believed in me.

iv

Acknowledgments

To begin, I would like to thank my committee: Lance R. Williams (my advisor), George
Luger, Ed Angel, and Michael Cook. Their commitment of time, suggestions, and feed-
back improved my experimentation and exposition in many ways. Lance quickly recog-
nized my strengths while helping me overcome my weaknesses. His assistance was criti-
cal in familiarizing myself with the background work that lay the foundation for my work.
Aside from Ph.D. research, Lance and I have also had many discussions on topics either
unrelated or only peripherally related to my work. I will always value our brainstorming
sessions on topics as diverse as vision, perception, image processing, and topology.

Lynne Jacobson, the computer science department’s graduate advisor, was of great
help in straightening out a number of technical problems pertaining to my transcript and
other various paperwork. Thank you.

I would like to acknowledge the importance of having a circle of supportive friends,
especially fellow graduate students who can empathize as no others with the tribulations
of getting a Ph.D. The most influential of these friends are Terry Van Belle, Ben Andrews,
Jen Andrews, Aaron Clauset, James Horey, and Alison Boyer. Many others rightfully
belong on such a list as well.

I must also briefly acknowledge my lifelong friends from high school: Jen, Stacey, and
Anne. Few friendships last so long. Cherish them.

My family is of immense importance to me. My dad has always been proud of my
individual accomplishments while simultaneously encouraging me to take each project
one step further. My mom was exuberant the from the day I started grad school to the
day I finished. My sister, Aleta, holds a special place in my heart. She has always been
my muse, my single greatest inspiration. In her I see all the things I wish I was. She is
dedicated, hard-working, insightful, and frightfully clever. She has always looked up to
me. What she may not realize is how much I have always looked up to her.

Finally, I conclude with my thanks to Angie. She has exhibited unfailing confidence
in my eventual success and has stood by me through the difficult times. Most importantly,
she was simply there, day after day, helping me press forward. Thank you Angie.

v

Druid :

Representation of Interwoven
Surfaces in 21/2D Drawing

by

Keith Wiley

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2006

Druid :

Representation of Interwoven
Surfaces in 21/2D Drawing

by

Keith Wiley

B.A., Psychology, University of Maryland College Park, 1997

M.S., Computer Science, University of New Mexico, 2003

Ph.D., Computer Science, University of New Mexico, 2006

Abstract

The state-of-the-art in computer drawing programs is based on a number of concepts that

are over two decades old. One such concept is the use of layers for ordering the surfaces

in a 21/2D drawing from top to bottom. A 21/2D drawing is a drawing that depicts sur-

faces in a fundamentally two-dimensional way, but also represents the relative depths of

those surfaces in the third dimension. Unfortunately, the current approach based on layers

unnecessarily imposes a partial ordering on the depths of the surfaces and prevents the

user from creating a large class of potential drawings,e.g., of Celtic knots and interwoven

surfaces.

The first half of this dissertation describes a novel approach which only requires local

depth ordering of segments of the boundaries of surfaces in a drawing rather than a global

vii

depth relation between entire surfaces. Our program provides an intuitive user interface

with a fast learning curve that allows a novice to create complex drawings of interwoven

surfaces that would be extremely difficult and time-consuming to create with standard

drawing programs.

The second half of this dissertation describes a previously unrealized topological prop-

erty of 21/2D scenes. Knowledge of this property makes possible the design of algorithms

for manipulating 21/2D representations in a way that is isomorphic to elemental 21/2D

scene changes. Furthermore, this property can be exploited to vastly improve the perfor-

mance of a 21/2D scene editor.

viii

Contents

List of Figures xvi

Glossary xxi

1 Introduction 1

1.1 Drawing Programs . 1

1.2 21/2D Scenes . 5

1.3 Comparison Between Drawing and Three-Dimensional Modeling6

1.4 Previous Research .7

1.5 Thesis Overview . 9

1.5.1 Drawing Programs . 9

1.5.2 Comparison Between Conventional Drawing Programs andDruid 9

1.5.3 Druid’s Representation: Labeled Knot-Diagrams10

1.5.4 Labeled Knot-Diagram Spaces10

1.5.5 Editing 21/2D Scenes .11

ix

Contents

1.5.6 Finding a Legal Labeling .12

1.5.7 Boundary Grouping With Cuts12

1.5.8 Rendering .13

1.5.9 Crossing-State Equivalence Classes13

1.5.10 Finding Crossing-State Equivalence Classes14

1.5.11 Equivalence Class Independence14

1.5.12 Exploiting Crossing-State Equivalence Classes15

1.5.13 Future Work .15

1.5.14 Conclusions .16

2 Drawing Programs 18

2.1 Drawing Program User-Interactions .19

2.2 Software Affordances .20

2.3 Direct Manipulation Interfaces .22

2.4 Constraint-Based Interfaces .23

3 Comparison Between Conventional Drawing Programs andDruid 25

3.1 Constructing Images of Interwoven Surfaces in Conventional Drawing

Programs .26

3.1.1 Spoofs .26

3.1.2 Painting Planarized Graphs .28

x

Contents

3.1.3 Local DAG Manipulation . 30

3.2 Affordances of Conventional Drawing Programs30

3.3 Stages in Drawing Program Evolution34

3.4 Demonstration ofDruid . 35

4 Druid’s Representation: Labeled Knot-Diagrams 37

4.1 Labeled Knot-Diagrams .38

4.2 Labeling Scheme .38

4.3 Motivating the Labeling Scheme .40

5 Labeled Knot-Diagram Spaces 42

5.1 The Search Space .43

5.2 Graph Distance Between Labelings .45

5.3 Calculating the Depth Ranges for a Labeled Knot-Diagram48

6 Editing 21/2D Scenes 52

6.1 21/2D Scene Editors vs. Drawing Representation Editors53

6.2 User Interactions .55

6.2.1 Labeling-Preserving Interactions56

6.2.2 User Interactions Requiring Relabeling61

6.3 Delayed Response .62

6.4 Minimum Acceptable Mouse Distance65

xi

Contents

7 Finding a Legal Labeling 68

7.1 Crossing-Flip User Interaction .68

7.2 Overview of the Search .69

7.3 Boundary Traversal During the Search70

7.4 Structuring the Search .72

7.4.1 Branch-and-Bound .74

7.5 Improving the Search .75

7.5.1 Choosing Good Boundary Traversal Starting Segments76

7.5.2 Ordering the Search .76

7.5.3 Terminating the Search Process by Employing a Timeout79

7.6 Performance Improvement of Each Heuristic80

7.6.1 Choosing Good Boundary Traversal Starting Segments81

7.6.2 Ordering the Search .85

7.7 Search Performance .89

7.7.1 Labeling Search Experiment Test 190

7.7.2 Labeling Search Experiment Test 296

8 Boundary Grouping With Cuts 105

8.1 Two Kinds of Object Groups: Boundary Groups and Surface Groups . . .106

8.2 Boundary Grouping with Cuts .107

8.3 Finding Legal Cuts .110

xii

Contents

8.3.1 The Cut Search Process .112

8.3.2 Cached Cuts .113

8.3.3 Finding a Cut for One Boundary113

8.3.4 Testing a Cut .115

8.4 Manual Cuts .117

8.5 Improving Cuts .118

9 Rendering 122

9.1 Overview .123

9.1.1 Collect All Regions .126

9.1.2 Calculate Region Colors .127

9.1.3 Calculate Suspected Enclosing Regions133

9.1.4 Draw All Regions .135

9.2 ExportingDruid Renderings .135

10 Crossing-State Equivalence Classes 137

10.1 A Problem with the Labeling Search .138

10.2 Crossing-State Equivalence Classes .141

10.2.1 Definition of Key Concepts .141

10.2.2 Reducing General 21/2D Scenes to Simple 21/2D Scenes 142

10.3 The Crossing-State Equivalence Class Rule143

xiii

Contents

11 Finding Crossing-State Equivalence Classes 145

11.1 Topological Description .145

11.2 Algorithmic Description .147

11.2.1 Preliminaries .148

11.2.2 Find All Crossing Neighbors in the Drawing148

11.2.3 Calculate the Reflexive, Symmetric, Transitive Closure of the

Crossing Neighbor Relation .151

11.3 Performance of the Search for Crossing-State Equivalence Classes152

12 Equivalence Class Independence 156

12.1 Equivalence Class Independence .157

12.2 Atomic vs. Nonatomic Crossing-State Equivalence Class Flips159

13 Exploiting Crossing-State Equivalence Classes 164

13.1 Applying Crossing-State Equivalence Classes to the Labeling Search . . .165

13.2 Relabeling Without Search .167

13.3 Performance of the Direct Crossing-State Equivalence Class Flip170

13.3.1 Example Performance .170

13.3.2 Performance Relative to Drawing Complexity176

14 Future Work 180

14.1 Labeling with Crossing-State Equivalence Classes181

xiv

Contents

14.2 Locking Crossings and Kinematic Interactions182

14.3 Occluding Contours .185

15 Conclusion 192

Appendices 195

A Relationship to Depth Sort 196

B Description of Data Structures and Basic Organization 198

B.1 The Fundamental Drawing Program .198

B.2 The Crucial Data Structures .199

References 206

Index 210

xv

List of Figures

1.1 Layers As a Directed Acyclic Graph 4

1.2 Druid’s Capabilities . 5

1.3 Druid Examples .17

3.1 Spoof Example .27

3.2 Spoof Analysis .27

3.3 Painting Planarized Graphs .29

3.4 Demonstration of theReal-DrawPush-Back Tool 31

3.5 Limitations of theReal-DrawPush-Back Tool 33

3.6 Demonstration ofDruid . 36

4.1 A Knot-Diagram and a Labeled Knot-Diagram39

4.2 Labeling Scheme .40

4.3 Deriving the Labeling Scheme .41

5.1 Space of Drawing Topologies .45

xvi

List of Figures

5.2 Sample Labeling Space .46

5.3 Labeling Space Graph .47

5.4 Possible Depth Ranges .49

5.5 Relaxed Labeling Scheme .50

6.1 crossing-projection .57

6.2 crossing-projection For One Jump .59

6.3 Minimum Acceptable Mouse Distance67

7.1 Segment Enumeration Demo .82

7.2 Segment Enumeration Plot: Running times83

7.3 Segment Enumeration Plot: Search Nodes Visitedt84

7.4 Iterative Deepening Demo .86

7.5 Iterative Deepening Plot: Running Times87

7.6 Iterative Deepening Plot: Search Nodes Visited88

7.7 Labeling Search Experiment 1 .92

7.8 Labeling Search Experiment 1: Search Time vs. Number of Crossings .93

7.9 Labeling Search Experiment 1: Search Time vs. Number of Crossings,

Log Axis . 94

7.10 Labeling Search Experiment 1: Search Time vs. Number of Crossings,

Incremental .95

7.11 Labeling Search Experiment 2 .98

xvii

List of Figures

7.12 Labeling Search Experiment 2: Search Time vs. Number of Crossings .99

7.13 Labeling Search Experiment 2: Search Time vs. Number of Crossings,

Log Axis .100

7.14 Labeling Search Experiment 2: Search Time vs. Number of Crossings,

Incremental .101

7.15 Labeling Search Experiment 2: Search Time vs. Maximum Region Depth102

7.16 Labeling Search Experiment 2: Search Time vs. Maximum Region

Depth, Log Axis .103

7.17 Labeling Search Experiment 2: Search Time vs. Maximum Region

Depth, Incremental .104

8.1 Cuts Join Two Boundaries, Forming a Single Boundary108

8.2 Cut Crossing Types in the Labeling Scheme109

8.3 Finite vs. Infinite Surfaces .111

8.4 Using Cut Weaving to Determine a Potential Cut’s Legality117

8.5 Cut Optimality Study .119

9.1 Rendering .125

9.2 Slices Connect Boundaries to a Location Inside the Bounded Surface . .128

9.3 Slice Origins .129

9.4 Using Slices to Find Region Coverings132

9.5 Suspected Enclosing Regions .134

xviii

List of Figures

10.1 Examples of Crossing-Flips which Produce Slow Labeling Searches . .140

10.2 Examples of Equivalence Classes .141

10.3 Scene Generality Spectrum .143

10.4 Cuts Break Self-Overlapping Surfaces into Multiple Abutting Surfaces .143

11.1 Crossing Neighbors .146

11.2 Search for Crossing-State Equivalence Classes Experiment153

11.3 Search for Crossing-State Equivalence Classes Experiment: Search Time

vs. Number of Crossings .154

11.4 Search for Crossing-State Equivalence Classes Experiment: Search Time

vs. Number of Crossings, Log axis .155

12.1 Dependent Equivalence Classes .158

12.2 Decomposition of Atomic Flips into Nonatomic Flips161

13.1 A Flipped Crossing’s Two States .168

13.2 Crossing-State Equivalence Class Flip Experiments 1 and 2172

13.3 Crossing-State Equivalence Class Flip Experiments 1: Running Times .173

13.4 Crossing-State Equivalence Class Flip Experiments 2: Running Times .174

13.5 Crossing-State Equivalence Class Flip Experiment 3175

13.6 Crossing-State Equivalence Class Flip Experiment 3: Running Times . .176

13.7 Crossing-State Equivalence Class Flip Experiment 4: Search Time vs.

Class Size .177

xix

List of Figures

13.8 Crossing-State Equivalence Class Flip Experiment 4,Druid (SEARCH) :

Search Time vs. Class Size .178

13.9 Crossing-State Equivalence Class Flip Experiment 4,Druid (DIRECT) :

Search Time vs. Class Size .179

14.1 Locked Boundaries .183

14.2 Locked Surfaces .184

14.3 Occluding Contour .185

14.4 Examples of Occluding Contour Drawings186

14.5 Occluding Contours Permit the Construction of Containers188

14.6 Creased Occluding Contour .190

14.7 Occluding Contour Crossing Types in the Labeling Scheme191

xx

Glossary

affordances The set of interactions that an object or a user interface permits. For ex-

ample, a doorknobaffords rotation while a door on hinges affords pushing or

pulling.

boundary The one-dimensional closed perimeter of a surface. InDruid, boundaries are

defined using closed B-splines.

boundary segment The contiguous region of a boundary lying between two crossings

on that boundary. If a boundary has no crossings, the entire boundary is a single

boundary segment.

boundary segment depth The depth index assigned to a particular boundary segment,

where the depth corresponds to the number of surfaces that lie between the viewer

and that segment. A segment that lies on top of the drawing has a depth of zero.

constraint-propagation A method of graph-labeling by which certain combinatorially

complex problems can be reduced to unique solutions. When one vertex of a

graph is labeled, this constrains adjacent vertices, which in turn propagate their

own constraints deeper into the graph. By means of this process, it is often the

case that an apparently ambiguous labeling problem can be reduced to a single

consistent labeling.

crossing A location where two boundaries intersect.

xxi

Glossary

crossing-flip The user-interaction in which a use clicks on a crossing to invert the cross-

ing’s state. This interaction is used to invert the relative depth ordering of the two

surfaces that overlap at the crossing.

crossing-projection The process of computing the new locations of the crossings of a

drawing after a boundary is moved.

crossing-state An indication of which surface is above and which is below at the cross-

ing of two boundaries.

crossing-state equivalence classA group of crossings that are constrained to flip as a

unit.

cut A line connecting two different locations on one (or two) boundaries. When con-

necting two boundaries, a cut joins the two boundaries into a single boundary.

When connecting two locations on the same boundary, a cut separates the bound-

ary’s surface into two abutting surfaces.

cut-chain An alternating sequence of boundaries and cuts that joins the two boundaries

at each end.

Druid A vector-based drawing program which uses an interwoven representation and

provides a user interface which has affordances that are isomorphic to those of

idealized physical surfaces.

Druid (SEARCH) A mode of functionality in whichDruid finds a new labeling by per-

forming a tree search.

Druid (CSEC SEARCH) A mode of functionality in whichDruid usescrossing-state

equivalence classesto vastly reduce the size of the search space during a labeling

tree search.

xxii

Glossary

Druid (DIRECT) A mode of functionality in whichDruid usescrossing-state equiva-

lence classesto directly relabel a drawing following acrossing-flipwithout per-

forming a tree search.

finite surface A surface bounded by a user-specified exterior boundary and which there-

fore has a finite area.

fully connected boundary A boundary which is joined by cuts or cut-chains to every

other boundary bounding the same surface.

general 21/2D scene A 21/2D scene in which surfaces may have multiple boundary com-

ponents and may self-overlap.

holeless 21/2D scene A 21/2D scene in which all surfaces are defined by a single bound-

ary component (such surfaces do not containholes), but in which surfaces may

self-overlap.

infinite surface A surface with no user-specified exterior boundary but which has an

implicit exterior boundary at an infinite distance. Thus, it has an infinite area.

interwoven surfaces A pair of surfaces where one surface is above the other in one

location but is below the other in a different location. Interwoven surfaces cannot

be represented using a layered representation because there is no global depth

order relation.

knot-diagram A projection of a set of closed curves onto a plane together with indica-

tions which show which curve is on top at every crossing.

labeled knot-diagram A knot-diagram with a sign of occlusion for every boundary and

a depth index for every boundary segment.

labeling The state of a particular labeled knot-diagram consisting of a unique assignment

of signs of occlusion for every boundary, crossing-states for every crossing, and

boundary segment depths for every boundary segment.

xxiii

Glossary

labeling scheme A set of localized constraints on the depths of the four segments that

meet at a crossing. The labeling scheme must be satisfied at every crossing in a

drawing in order for the drawing to be rendered.

labeling search A tree search thatDruid automatically performs after topology-

changing events occur. The purpose of the labeling search is to find a legal la-

beling for the current drawing so that it can be rendered.

layered 21/2D scene A 21/2D scene in which the global relative surface depth relation

conforms to a directed acyclic graph.

legal labeling A labeling in which all crossings satisfies the labeling scheme. Legal

labelings can be rendered.

non-self-overlapping 21/2D scene A 21/2D scene in which no surface self-overlaps, but

in which surfaces may have multiple boundary components,i.e., may contain

holes.

partially connected boundary A boundary which is joined by cuts or cut-chains to

some of the other boundaries bounding the same surface.

rendering The process of generating a final image of a 21/2D scene. In a rendered image

a color is assigned to each region that represents the color and opacity properties

of the surfaces covering that region.

region A contiguous area of the canvas that is bounded by boundary segments,i.e., a

disjoint partitioning of the canvas.

sign of occlusion The designation of which side of a boundary is bounding,i.e., which

side of a boundary the surface lies on.

simple 21/2D scene A 21/2D scene in which all surfaces are defined by single boundary

components that do not cross themselves,i.e., Jordon curves.

xxiv

Glossary

slice A line connecting a location on a boundary to a point in the interior of the bounded

surface.

spoof A configuration of surfaces which does not interweave, but which is constructed

such that the rendered image presents the illusion of interwoven surfaces.

surface A two-manifold with boundary.

21/2D scene A scene of surfaces which is fundamentally two-dimensional but which also

represents the relative depths of surfaces in the third dimension,i.e., the absolute

position of a surface in the third dimension is not indicated, but the relative depths

of pairs of surfaces are.

unconnected boundary A boundary which is not joined by cuts or cut-chains to any

other boundary bounding the same surface.

xxv

Chapter 1

Introduction

1.1 Drawing Programs

Drawing programs originated with Sutherland’s seminal Ph.D. thesis in 1963, in which

many recognizable components of modern drawing programs were already present (see

Sutherland [40] and Sutherland [41]). Since then, a number of refinements have been made

to the general design of drawing programs, aided primarily by increased computing power

and hardware innovations such as the mouse. In 1984, Apple releasedLisaDraw 3.0(see

Craig [14]), which despite its age, is effectively a modern drawing program. It uses a tool

palette that is similar to the tool palettes of modern drawing programs and provides similar

functionality for the construction and manipulation of shapes to that of modern drawing

programs. Most importantly, its underlying representation for determining the relative

depths of surfaces has not been improved upon in twenty years, despite the weaknesses of

that representation. For the last twenty years, research on drawing programs has focused

on areas other than the underlying representation. For example, a considerable amount of

research has focused on methods for constructing objects and manipulating their shape,

but once constructed, those objects are assigned to depths in a conventional layer-based

1

Chapter 1. Introduction

drawing representation. One area in which considerable progress has been made is the

intelligent interpretation ofsketches, i.e., imprecise hand drawings which are analyzed to

discover salient features. For example,CorelDRAW 12, a professional drawing program,

provides asmart drawing tool, which allows a user to freehand draw approximate shapes

that are recognized and fitted to stock shapes such as ellipses (see Corel [13]). Barla,

et al. describe a method of line drawing simplification which either removes or merges

extraneous lines without losing defining features of the drawing (see Barla et al. [8]).

Gangnet et al. describe a method for closing gaps in freehand curves, which is important

for paint-fill algorithms (see Gangnet et al. [16]). There has also been a fair amount

of work on aligning the relative positions of objects on the canvas, such asCorelDRAW

12’s dynamic guides, which are temporary guides for aligning graphic objects to each

another (see Corel [13]) and Raisamo and Raiha’s work on object alignment using direct

manipulation interfaces (see Raisamo and Raiha [35, 36]). Direct manipulation interfaces

are discussed in Section 2.3. In addition, Raisamo describes a novel way to construct

shapes in which a block is chiseled, similar to three-dimensional sculpting, rather than

defined using explicit boundaries such as geometric primitives and splines (see Raisamo

[37]). While the previous work on drawing programs is significant and valuable, it all relies

on a layer-based representation for the relative depths of surfaces, and this representation

has serious limitations.

One function of a drawing program is to allow the construction and manipulation of

drawings of overlapping surfaces, which we simply call21/2D scenes. A 21/2D scene is

a scene of surfaces that is fundamentally two-dimensional, but which also represents the

relative depths of those surfaces in the third dimension,i.e., the absolute position of a

surface in the third dimension is not indicated, but the relative depths of pairs of surfaces

are. Using existing programs, a drawing can easily be constructed in which multiple sur-

faces partially overlap. When multiple surfaces overlap, the program must have a means

of representing which surface is on top for each area where two surfaces overlap. Existing

drawing programs solve this problem by representing drawings as a set of distinct layers

2

Chapter 1. Introduction

where each surface resides in a single layer. For any given pair of surfaces, the one that

resides in the upper (or shallower) layer is assigned a smaller depth index and appears

above wherever those two surfaces overlap. Consequently, the use of layers imposes a

partial ordering, or a directed acyclic graph (DAG), on the surfaces such that no subset

of surfaces can interweave (Fig. 1.1). This restriction precludes many common drawings

which a user may wish to construct (Fig. 1.2). Specifically, a layered representation pre-

cludes the construction of scenes that containinterwoven surfaces, i.e., pairs of surfaces

for which each surface is above the other somewhere in the scene. Because such programs

do not span the full space of possible 21/2D scenes, they therefore impose limitations on

the drawings that a user can create.

Our research uses a more general representation as the basis for a more powerful draw-

ing tool, calledDruid. Druid eliminates the assumption that surfaces cannot interweave.

It therefore spans a larger space of 21/2D scenes by using a representation that makes

weaker assumptions about the drawing. This generality makesDruid a more versatile

drawing tool.

3

Chapter 1. Introduction

A

B C

D
E

F

A

B

C

D

CA

B

D

F

E

D

B

A

C

Figure 1.1: The classic approach to representing relative surface depths is to assign the surfaces to
distinct layers (top left). It follows that the surface relative depth relation is a directed acyclic graph
(DAG). No subset of surfaces can interweave because this would require a cycle in the graph (top
right). This approach precludes interwoven drawings (bottom left) in which the surface relative
depth relation has cycles (bottom right).

4

Chapter 1. Introduction

Figure 1.2:Druid permits the construction of drawings of interwoven surfaces, such as those shown
here.

1.2 21/2D Scenes

The term21/2D is used in different ways in the literature. In particular, it is used differently

when describing three-dimensional modeling and when describing the psychophysics of

vision. For the purposes of our research we use the definition coined by Marr (see Marr

[25]). According to Marr, a 21/2D sketch is a representation of surfaces that is funda-

mentally two-dimensional, but which also represents surface orientations and the relative

depths of those surfaces in the third dimension.

5

Chapter 1. Introduction

1.3 Comparison Between Drawing and Three-

Dimensional Modeling

Since the purpose of a 21/2D drawing program is to construct drawings that contain some

information about the third dimension, one might assume that 21/2D drawing is effec-

tively three-dimensional modeling, in which a description of a three-dimensional model is

constructed in a three-dimensional domain [6, 7].Druid has strong similarities to three-

dimensional modeling programs in that the objects it represents are embedded in three-

dimensional space.1 However, there are inherent differences between the two construc-

tion methods. SinceDruid’s domain is confined to a plane, its representation is naturally

manipulated using a two-dimensional user interface, such as a computer display and a

mouse. Three-dimensional modeling programs produce truly three-dimensional represen-

tations which are then generally viewed from multiple viewpoints on a two-dimensional

display and manipulated with a two-dimensional input device,e.g., a tablet or a mouse. In

an informal experiment, we observed that the time required to construct and alter 21/2D

scenes usingDruid can be considerably shorter than the time required to construct and

alter corresponding three-dimensional models. For example, we observed that the con-

struction time for the drawing shown in Fig. 1.3 (top left) is about two minutes when

usingDruid, but is upwards of an hour or more when using a three-dimensional modeling

program. Thus,Druid serves a useful function within its domain since it allows a user to

accomplish his goal more quickly than he could in a three-dimensional domain.

One might ask if the reliance on a two-dimensional interface is the only reason three-

dimensional modeling programs perform poorly relative toDruid when constructing 21/2D

scenes. There are devices which permit a user to manipulate and view three-dimensional

computer models in three-dimensions. For example, stereoscopic displays provide three-

1More specifically,Druid constrains the user to the construction of topologically valid ori-
entable two-manifolds with boundary embedded inR3 such that their projection ontoR2 can have
multiplicity greater than one but is everywhere nonsingular,i.e., animmersion(see Williams [44]).

6

Chapter 1. Introduction

dimensional observation, and three-dimensional input devices (such as the Body Language

User Interface (BLUI) [10]) permit three-dimensional manipulation. Although these sys-

tems are likely to assist in the construction of actual three-dimensional models, we remain

unconvinced that 21/2D scenes can be constructed or manipulated with precision or speed

comparable to that ofDruid. One major problem with using three-dimensional modeling

to achieve 21/2D results is that three-dimensional interfaces assume the third dimension

is continuous. The continuity of the third dimension loses the useful property of 21/2D

scenes that the third dimension becomes discrete after projection onto a plane,i.e., sur-

faces in 21/2D scenes cannot interpenetrate and therefore reside at integer depth indices

with respect to one another. This property is very useful andDruid exploits it to vastly

reduce the number of operations a user must perform in order to construct an intended

drawing.

1.4 Previous Research

It is important to realize thatDruid is not merely a Celtic knot tool. Many researchers have

studied the construction and organization of Celtic knots (see Cromwell [15] and Scharein

[39]) and several programs are specifically designed to facilitate the construction of images

of celtic knots and mathematical knots in general (see [1, 5, 12, 39, 46]). Such systems,

however, are limited to knot constructions,i.e., interwoven cords.Druid, on the other

hand, permits the construction of much more general scenes in which the surfaces can be

any orientable two-manifold with boundary. In particular, there exist scenes of interwoven

surfaces which are not scenes of knots,e.g., Fig. 1.3 (top left and top center). Neither

conventional drawing programs nor knotwork programs can represent such scenes.

Perhaps the research that most closely resemblesDruid is that by Baudelaire and

Gangnet [9], which relies onplanar mapsas the organizing principle for a drawing tool

andmap-sketchingas a means to construct 21/2D scenes. Planar maps permit the construc-

7

Chapter 1. Introduction

tion of overlapping curve segments, which are subsequently pruned using map-sketching,

during which some edges are erased. Each face of the graph (an edge-bounded region of

the surface boundary graph) can be assigned an independent color in the drawing. With

a proper erasure of edges and coloring of faces, the illusion of interwoven surfaces can

be achieved. It is interesting to note that edge erasure is not required for this method to

work and is therefore superfluous,i.e., faces can be colored to achieve the appearance of

interwoven surfaces without erasing any edges. Baudelaire and Gangnet’s planar maps are

quite similar to the best method available inAdobe Illustrator[2] for constructing 21/2D

scenes2 in which the user converts a series of overlapping curves into a planarized graph

in which the faces can be assigned independent colors. As such, the Baudelaire method is

simply theIllustrator method with an additional (and unnecessary) edge-erasing interac-

tion, although their research predates the implementation of this feature inIllustrator. We

describe this planar map method for constructing interwoven scenes in detail in Section

3.1.2.

The planar map method does not possess the naturalaffordancesof 21/2D scenes. Af-

fordances are the natural manipulations an object suggests for itself (see Norman [33, 34]).

For example, a mouse affords translational movement and clicking. 21/2D scenes afford

21/2D manipulations such as surface construction and inversion of the relative depth order-

ing of surfaces. A 21/2D drawing program should have a user interface whose affordances

are isomorphic with the affordances of 21/2D scenes. We discuss affordances in detail in

chapters 2 and 3. The edit-distances required to achieve elemental drawing changes can

be quite large when using the methods employed by conventional drawing programs.

2This is the best method that isnativelyavailable inAdobe Illustrator. There are third-party
plugins that facilitate the construction of a specificsubsetof interwoven scenes,i.e., Celtic knots
(see Artlandia [5]). However, these systems do not span the full space of 21/2D scenes and do not
provide naturalaffordances.

8

Chapter 1. Introduction

1.5 Thesis Overview

This document describes the novel aspects ofDruid, i.e., those aspects ofDruid which dis-

tinguish it from existing drawing programs. This level of description should be sufficient

for understandingDruid since those aspects ofDruid which are not described,e.g., com-

mon utilities such as the use of B-splines or the Macintosh graphics toolbox, are common

knowledge and are described in other reference material [4, 3].

1.5.1 Drawing Programs

One of the main goals of this document is to describe howDruid works in enough detail to

allow a careful reader to reimplement it. Some of the components ofDruid are common to

most drawing programs,e.g., The Macintosh graphics toolbox and B-Splines [4, 3]. We do

not make an effort to describe those aspects ofDruid which are common to most drawing

programs, but instead focus our efforts on those aspects unique toDruid. Chapter 2 de-

scribes the user-interactions that a drawing program likeDruid must provide. This chapter

also describes important concepts from the field of human computer interaction (HCI), in-

cludingaffordances, direct manipulation interfaces, andconstraint-based interfaces, and

describes how these concepts apply toDruid’s design.

1.5.2 Comparison Between Conventional Drawing Programs and

Druid

While Druid enables the construction of scenes of interwoven surfaces, similar images

can be constructed using conventional drawing programs. Consequently, one may won-

der what additional benefitsDruid offers. Chapter 3 describes how images of interwoven

surfaces can be constructed using conventional drawing programs and illustrates the diffi-

9

Chapter 1. Introduction

culties that are inherent in using these programs. This chapter also describes three stages in

the evolution of drawing programs, starting with the most basic,i.e., those that rely strictly

on layers, and culminating withDruid, which can naturally represent any 21/2D scene.

This chapter should make it clear that despite the feasibility of using these programs to

construct scenes of interwoven surfaces, there remain the unresolved issues of naturalness

and ease of use. Finally, this chapter presents a sequence ofDruid screen captures that

illustrate the construction of a complex interwoven surface and describe what the user is

doing at each step.

1.5.3 Druid’s Representation: Labeled Knot-Diagrams

Druid represents scenes of surfaces in a fundamentally different way than conventional

drawing programs. Understanding this representation is central to an appreciation of how

Druid differs from conventional drawing programs both in terms of naturalness and ease

of use. Chapter 4 describesDruid’s representation, which we call alabeled knot-diagram,

and describes thelabeling scheme, a set of constraints which legally labeled knot-diagrams

satisfy. To minimize the possibility of confusion about the origin of (or justification for)

the labeling scheme, this chapter also motivates the labeling scheme using a real scene of

physical surfaces,i.e., a photograph of overlapping sheets of paper.

1.5.4 Labeled Knot-Diagram Spaces

Druid does a lot of work automatically, without any user intervention, thus reducing the

cognitive burden on the user. A simpler program might merely be a labeled knot-diagram

editor. The user of such a program would assign crossing-states, signs of occlusion, and

boundary segment depths manually in order to construct a legal labeled knot-diagram.

However, such a program would be tedious to use and would offer the wrong affor-

dances,i.e., interactions in such a program would not correlate with elemental 21/2D scene

10

Chapter 1. Introduction

changes. Instead,Druid automatically assigns a legal labeling following a user-interaction.

To do this,Druid must search through the space of all possible labelings to find a legal

labeling. In particular, it must find thebest possiblelegal labeling for a given situation,i.e.,

the minimum-differencelabeling with respect to the labeling that precedes to the search.

Chapter 5 describes thelabeling space, the space of labeled knot-diagram that exist for a

given drawing,i.e., the space of configurations that a particular labeled knot-diagram can

assume. This chapter also describes thesearch space, a subset of the labeling space which

Druid must search through to find a new labeling. Lastly, this chapter describes the graph

distance between labelings in the labeling space.

1.5.5 Editing 21/2D Scenes

The user-interactions that are used to manipulate 21/2D scenes inDruid can be classified

into two categories, those which preserve the current labeling,e.g., dragging a boundary

without causing a topological change, and those which requireDruid to find a new la-

beling, e.g., dragging a boundary such that crossings are created or destroyed, or such

that the relative positions of crossings on a boundary change. It is important to under-

stand how these categories differ in order to understand howDruid operates in each sit-

uation. Chapter 6 describes these user-interactions and the two categories. This chapter

also describescrossing-projectionwhich is Druid’s technique for maintaining the cur-

rent labeling without the need to rediscover crossings as the user modifies the locations

and shapes of boundaries. Finally, this chapter describes two techniques that are used to

improveDruid’s performance during many user-interactions. We call the first technique

delayed response. It helps produces smooth feedback during continuous changes. Inter-

actions come in two forms, which are distinct categories mentioned previously. They can

becontinuousor discontinuous. For example, dragging a boundary is continuous, while

flipping a crossing is discontinuous. During continuous interactions, we want the fastest

turnaround times possible in order to achieve a smooth animation-like effect. Delayed

11

Chapter 1. Introduction

response is a method for maximizing the likelihood of fast smooth response times during

continuous user-interactions. We call the second techniqueminimum acceptable mouse

distance. If the mouse moves too far in a single step, there is a risk thatDruid will suffer

from errors in its crossing-projection algorithm. Minimum acceptable mouse distance is a

technique for minimizing the possibility of these errors.

1.5.6 Finding a Legal Labeling

User-interactions which require a new labeling require thatDruid actually find a new label-

ing. It does this by searching the search space corresponding to the current knot-diagram

for a new legal labeling. This search can be difficult to perform quickly because the search

space can be very large and the fraction of the labelings in the search space that are legal

can be very small. Chapter 7 describes how the labeling search is performed. Since the

search space can be very large,Druid uses a number of heuristics to increase the likelihood

that the search will terminate quickly and with a good solution. Finally, this chapter de-

scribes the various heuristics that are used in the search and provides experimental results

that demonstrate the effectiveness of these heuristics and the effectiveness of the search

overall.

1.5.7 Boundary Grouping With Cuts

There are two specific problems that can occur when a surface is bounded by multiple

boundaries. The first problem is thatDruid must know which boundaries to drag as a

unit when the user drags a surface. The second problem is that whenDruid cannot tell

which boundaries bound the same surface the labeling is ambiguous. Thus, it is useful to

have information about boundary groups that represent a more abstract unit,i.e., a surface.

Druid is capable of automatically identifying surfaces with multiple boundaries without

any intervention from the user. Chapter 8 describes howDruid does this by usingcuts,

12

Chapter 1. Introduction

i.e., paths connecting points on two boundaries in a way that is analogous to a scissor cut

through an actual surface.

1.5.8 Rendering

Druid can function in two viewing modes,knot-diagram modeand rendering mode. In

knot-diagram mode, boundaries are illustrated with closed curves, signs of occlusion are

illustrated with either hash marks or arrows, and occluded boundary segments are illus-

trated with a dimmed or faded color. The interiors of surfaces are not colored at all, thus

surfaces are illustrated only by their boundaries. In knot-diagram modeDruid displays a

schematic view of the 21/2D scene that the user is constructing, not a high quality rendered

image. It is analogous to working inwireframemode in a three-dimensional modeling

program, in which polygonal three-dimensional models are illustrated only by the edges

of their polygons. The output that rendering mode corresponds to a completed piece of

artwork. Surfaces are illustrated as actual surfaces would appear,i.e., with solid areas of

color filling their interior. Chapter 9 describes how rendering is performed. One important

aspect of rendering is calculating the correct fill-color for everyregionof the canvas,i.e.,

a contiguous area of the canvas disjointly partitioned by boundary segments.Druid calcu-

lates a region’s color by usingslices, which are a path connecting a point on a boundary to

a point within the bounded surface. This chapter describes how slices are used to calculate

a region’s color.

1.5.9 Crossing-State Equivalence Classes

Druid’s search, as described in Chapter 7, suffers from a potentially serious problem. The

search space can be prohibitively large and the search can therefore take an unacceptable

amount of time to terminate. We have discovered a property of 21/2D scenes which we call

the crossing-state equivalence class rule which can be exploited in two different ways to

13

Chapter 1. Introduction

vastly improveDruid’s performance. The first way is to use the crossing-state equivalence

class rule as a further search heuristic in a way that exponentially decreases the size of

the search space. The second way to improveDruid’s performance is to directly deduce

the correct labeling that follows a user-interaction without performing a search at all. This

method is the fastest possible way to relabel a drawing, and performs significantly faster

than even the labeling search regardless of which heuristics are applied to the search pro-

cess. Unfortunately, this second method can only be applied in certain situations, principal

among these the case of a crossing-flip interaction.Druid must rely on the labeling search

in most other situations. Chapter 10 describes a complexity hierarchy of 21/2D scenes, de-

scribes how transformations between these complexities are performed, and then describes

the crossing-state equivalence class rule, which applies to drawings of a specific kind of

complexity calledsimple scenes. Chapters 11, 12, and 13 then describe how equivalence

classes are found and how they are exploited byDruid.

1.5.10 Finding Crossing-State Equivalence Classes

In order to exploit crossing-state equivalence classes, they must first be found for a particu-

lar drawing. Chapter 11 describes howDruid finds crossing-state equivalence classes on a

labeled knot-diagram. Later, experimental results on the performance of finding crossing-

state equivalence classes are presented. These results demonstrate that equivalence classes

can be found very quickly, and thus the need to initially find them does not hinder their

use.

1.5.11 Equivalence Class Independence

Once one thoroughly understands the crossing-state equivalence class rule, it may seem

like the space of possible configurations for a particular drawing has been fully described,

i.e., it may seem like the number of configurations that a drawing can assume directly cor-

14

Chapter 1. Introduction

responds to the number of possible equivalence class state instantiations for that drawing.

This assumption is premature however. Chapter 12 describes the concept of crossing-state

equivalence classindependence. The dependence or lack there-of between pairs of equiv-

alence classes dictates whether certain equivalence class flips areatomicor nonatomic.

Nonatomic flips correspond to dependent sets of equivalence classes and preclude some

equivalence class state instantiations from being possible,i.e., for some equivalence class

state instantiations, no legal labeling is possible. Finally, this chapter describes nonatomic

and atomic equivalence class flips and how they govern which equivalence class configu-

rations a labeling can legally assume.

1.5.12 Exploiting Crossing-State Equivalence Classes

As stated, there are two ways in which equivalence classes can be exploited to improve

Druid’s performance. First, they can be used to reduce the search space size. Second,

following a crossing-flip interaction,Druid does not have to perform a search for a new

legal labeling since a much faster and more efficient approach is to directly deduce the

new labeling. Chapter 13 describes both methods, followed by experimental results that

demonstrate howDruid’s performance is improved by exploiting crossing-state equiva-

lence classes for relabeling.

1.5.13 Future Work

Druid, as described in this document, is a completed application. It contains all the nec-

essary functionality to construct interwoven 21/2D scenes. However, there are a few inter-

esting directions in which this work could be extended. In Chapter 14, we present three

areas of possible future work: labeling with crossing-state equivalence classes, locking

and kinematic interactions, and constructing scenes containingoccluding contours. Cur-

rently, crossing-state equivalence classes can only be found on a legally labeled figure.

15

Chapter 1. Introduction

Consequently, they are cannot be found prior to labeling. The effect is thatDruid can-

not fully exploit them as a search heuristic. Therefore, one useful extension of our work

would be to devise a means for finding crossing-state equivalence classes on an unlabeled

figure. Locking and kinematic interactions are interactions in whichDruid could conceiv-

ably prevent the user from breaking the current topology bylockinga user-interaction at

the point at which the topology is about to break and then producing translations and rota-

tions that are analogous to those of real physical objects,e.g., dragging a chain. Occluding

contours are the locus of points where a curved surface’s tangent plane is viewed edge-on.

Although Druid does not currently represent occluding contours it could be extended to

include them. This would permit the construction of a much larger class of scenes.

1.5.14 Conclusions

Chapter 15 first presents general conclusions of our research such asDruid’s novel repre-

sentation and the affordances of its user interface. Following these general conclusions, a

more specific list of the most important discoveries made during our work is presented.

16

Chapter 1. Introduction

Figure 1.3: Examples of artwork created withDruid. The construction and maintenance of these
drawings is simple and straightforward.

17

Chapter 2

Drawing Programs

While much research in computer science does not specifically describe a tangible soft-

ware system,i.e., the design and workings of an existing computer program, this research

does exactly that. Our research focuses not merely on the development of new andpo-

tentially useful theories, but on the design and implementation of anactual computer

program, which we callDruid. Druid is a new kind of vector-based drawing program

quite unlike those of the past. In order to understand what makesDruid special against

the backdrop of a large number of existing drawing programs, one must first be familiar

with the user-interactions that drawing programs provide. Only then, can one understand

how Druid works and what its advantages are over existing drawing programs. Thus, in

this chapter we present the crucial user interactions that drawing program must provide.

We discuss the concept ofaffordancesand how they relate to the design of a drawing pro-

gram’s user interface. Affordances are the actions an object most naturally suggests for

itself and they are an important aspect of the design of a drawing program’s user interface.

In addition to affordances, we discuss a related topic calleddirect manipulation interfaces,

which refers to user interfaces in which the user interacts directly with the thing being de-

picted rather than interacting with it through intermediate tools,e.g., menus, sliders, and

buttons. Lastly, we describeconstraint-based interfaces, which are interfaces in which

18

Chapter 2. Drawing Programs

hard constraints on the available options at any given moment guide the user’s interac-

tions. Constraint-based interfaces focus the user’s actions and attention on the outcomes

that are possible, and excludes those which are currently impossible.

2.1 Drawing Program User-Interactions

Many drawing programs provide tools for creating and manipulating splines. One such

program,MacPowerUser’s iDraw[23], bases all objects on splines. Rectangles, poly-

gons, even text are all represented using splines. This provides a consistent interface for

manipulating the various kinds of objects iniDraw. Similarly, Druid is based entirely on

splines. Like [21] and [38],Druid uses B-splines. All boundaries are B-splines, includ-

ing shapes that can be approximated by splines, such as hand-drawn curves, rectangles,

and text. The assumption that all boundaries are splines lends a uniformity to a drawing

program’s interface that makes it easier for a user to understand, while simulaneously sim-

plifying the programmer’s job. There are a number of user interactions that a spline-based

drawing program should permit. These interactions include:

• Create a new boundary

• Delete a boundary

• Smoothly reshape a boundary

• Drag a surface (drag all of its boundaries)

• Add or remove spline control points

• Increase or decrease spline degree

• Reverse a boundary’ssign of occlusion(discussed later)

• Reverse the depth ordering where two surfaces overlap.

The interface of a program should not only provide a method for each of these interac-

tions; these methods must beuser-friendly, that is, simple to understand and easy to use.

19

Chapter 2. Drawing Programs

Unfortunately, the only previous attempt to circumvent the partial ordering limitation,Me-

diaChance’s Real-Draw Pro 3, forces the user to use a complex and confusing interface.

2.2 Software Affordances

A software application’s interface possesses a specific set ofaffordances. The term af-

fordance is debated at great length in the literature. There are multiple interpretations for

this term and how it should be applied to design (see McGrenere [28]). Gibson originally

coined the term[17]. He defined the affordances of an object as the action possibilities of

that object relative to a particularactor, the person who is interacting with the object in

question. Gibson claimed that affordances are independent of the actor’s past experience

and accumulated knowledge, but are dependent on the specific actor,e.g., a table affords

sitting for a cat, but not for an elephant. Norman adopted the same term in [33, 34], but

uses it slightly differently. According to Norman, affordances are only those actions that

are perceived, not possible actions that are not perceived. Additionally, perceived actions

that are not actually possible are still affordances according to Norman. He defines affor-

dances as the clues an object offers about how it can be used, and believes affordances

can be dependent on an actor’s experience. In this way different people might perceive

different affordances for the same object based on their individual past experiences.

There is a general agreement that affordances are difficult to define with respect to

software. This observation results from the fact that affordances are usually defined with

respect to physical qualities of material objects. With this difficulty in mind, we define

the affordances of a user interface as the ways in which the user can interact with the

screen’s imagery, since for the most part existing interfaces present a single two dimen-

sional image to the user with which to interact. This interaction usually involves a key-

board and a mouse. In the case of drawing programs, use of the keyboard is generally

minimized because this violates the notion ofdirect manipulation interfaces(discussed

20

Chapter 2. Drawing Programs

below). Therefore, the affordances of drawing programs mainly consist of clicking on and

dragging various features of the visual presentation with a mouse and associated cursor.

In the case of drawing programs, this means clicking and dragging on the control points

of the various splines in the drawing.

In our design forDruid, we attempt to model our interface on a real physical system

and then to offer the affordances characteristic of that system. The physical system that a

drawing program depicts is a 21/2D scene which the user can manipulate in ways that are

appropriate for such scenes,e.g., altering the shape and placement of surfaces, and altering

the relative depths of the surfaces in areas of overlap.

Real physical surfaces possess certain natural affordances. They can be stretched,

translated, cut into smaller surfaces, have holes cut in them, and lifted above or pushed be-

neath one another in potentially interwoven arrangements. They can also be colored or be

made transparent. In some cases they can be glued to other surfaces to form larger surfaces.

We believe that an effective drawing program should provide a set of affordances that is

isomorphic to those of real surfaces. This amounts to a visual analogy between the pro-

gram’s usage and the thing depicted, in our case, 21/2D scenes. One example is translating

a surface by “grabbing” it with a hand-shaped cursor and then dragging it in the desired

direction, which is directly analogous to how a graphic designer might move pieces of

paper around on a drafting board. Unfortunately, many drawing programs do not offer

such a set of isomorphic affordances. It is our belief that while some programs, such as

Real-Draw, attempt to solve the problems posed in this research, they do so through inter-

faces with unnatural affordances which make the programs complicated and non-intuitive

to use.Druid’s interface possesses affordances which are isomorphic to the affordances of

the physical surfaces which are depicted. As such, it is simpler to use, while at the same

time, is more powerful than existing drawing programs in its capability to create and ma-

nipulate complex 21/2D scenes. Demonstrating thatDruid’s affordances are more natural

and therefore superior to the affordances of other drawing programs is a major focus of

21

Chapter 2. Drawing Programs

this research.

2.3 Direct Manipulation Interfaces

A concept that is closely related to affordances isdirect manipulation interfaces(see Nor-

man [34]). A direct manipulation interface is an interface which allows the user to interact

with the depicted object using the most direct method possible given the I/O devices that

are available. The least direct interface for drawings would be one in which the user types

textual commands to manipulate a drawing. A more direct interface would use a light-pen

or touch-sensitive screen, analogous to real pencil and paper. For example, Sutherland’s

Sketchpad[41] used a light-pen for user input. Today, most computers use a mouse inter-

face.

Given this limitation, a direct manipulation device is an interface in which mouse and

cursor movements are used to directly manipulate the elements of a drawing, as opposed

to using a set of menus, buttons, and sliders. The hand-dragging example, mentioned

previously, is a good example of a direct manipulation interface. Direct manipulation

interfaces are popular because they minimize the user’s effort by allowing him to interact

directly with the drawing being edited rather than through an intermediate interface. The

benefits of direct manipulation interfaces explain why most drawing programs rely heavily

on a mouse and only weakly on a keyboard.

Direct manipulation interfaces have been used in drawing programs in the past, such

as the original drawing program,Sketchpad. The basic premise of a drawing program as

a tool which shows the drawing as it is being constructed might seem obvious now, but it

originated with the WYSIWYG1 concept that came out of Xerox PARC in the 1970s (see

Myers [32]). Raisamo and Raiha applied the idea of direct manipulation interfaces to the

1“what you see is what you get”

22

Chapter 2. Drawing Programs

problem of aligning objects in a drawing (see Raisamo and Raiha [35, 36] and Raisamo

[37]). They demonstrated that such an approach provided significant improvements over

established methods such as alignment commands and gravity active points.

There is a close correspondence between direct manipulation interfaces and good af-

fordances because direct manipulation interfaces create a one-to-one correspondence be-

tween edit-distances and distances in the representation space of 21/2D scenes. Stated

differently, the user interface is isomorphic to the 21/2D scene the program represents and

manipulates. By contrast, a keyboard and command-line interface for a drawing program

generally requires numerous keystrokes, each prone to error, in order to accomplish very

simple tasks in terms of representation distance.

We have attempted to incorporate the notions of good affordances and direct manipula-

tion interfaces in the design ofDruid. Most user-interactions are performed by interacting

directly with the drawing in ways that are intended to make sense even to a novice user.

2.4 Constraint-Based Interfaces

Constraint-based interfaceshave become popular in drawing programs. The most com-

mon application of constraints in drawing programs is gravity-snapping, where the cursor

(and any object linked to the cursor) snaps to grid points for the purpose of keeping objects

aligned. A slightly different approach snaps objects to other objects rather than an under-

lying grid (see Gleicher [18]).Druid’s operation is also based on constraints. First,Druid

constrains the user to constructing topologically valid 21/2D scenes. Second, a user’s inter-

action with a drawing takes the form of a constraint, indicating the user’s intent, that guides

the search process for a new legal labeling. This search is described in later sections.

The correspondence we describe between a 21/2D scene and its depiction in a drawing

is not the first attempt to design a drawing tool based on a physical analogy. Gleicher [19]

23

Chapter 2. Drawing Programs

describes a method for manipulating boundaries in a drawing by applying physical forces

that push and pull against the boundaries. Treating drawings like physical systems is useful

because it allows the user to apply intuitive understanding of physics and topology to the

process of creating a drawing.

24

Chapter 3

Comparison Between Conventional

Drawing Programs andDruid

This document describes how our system,Druid, represents and permits the construction

and manipulation of interwoven 21/2D scenes. However, it is already possible to construct

images of interwoven surfaces using conventional drawing programs. Consequently, one

might wonder what purposeDruid serves. In this chapter we describe some methods by

which images of interwoven surfaces can be constructed using conventional drawing pro-

grams. In doing so, and in a followup discussion, we will show that it is difficult and

unnatural to construct interwoven scenes with conventional drawing programs,i.e., our

argument with interwoven surfaces in conventional drawing programs reaches beyond the

issue offeasability(conventional drawing programs are perfectly feasible in regard to im-

ages of interwoven surface) to the more fundamental issues ofnaturalnessandefficiency.

Druid is more than an augmentation to the conventional representation, it is a quantum

leap in the design and representation of 21/2D scenes. To illustrate this point, we present

the evolution of drawing program representations in three stages: global layers, localized

layers, and a complete lack of dependency on layers. The first stage represents most con-

ventional drawing programs. The second stage represents a single case we found amongst

25

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

conventional drawing programs,MediaChance’s Real-Draw Pro-3. The third stage rep-

resentsDruid. Finally, we present a sequence ofDruid screen captures that illustrate the

construction of a complex interwoven surface and describe what the user is doing at each

step.

3.1 Constructing Images of Interwoven Surfaces in Con-

ventional Drawing Programs

With considerable effort, itis possible to create images with existing drawing programs

that depict interwoven surfaces. However, the underlying drawing representation in such

cases is not, and cannot be, truly interwoven. Three ways of achieving this effect are:

1. Spoofs

2. Painting planarized graphs

3. Local DAG manipulation.

In this chapter we describe each of these methods in detail.

3.1.1 Spoofs

One method for constructing an image of interwoven surfaces without using an interwoven

representation is to construct one set of surfaces which has the appearance of a completely

different set of surfaces. We call this sort of illusion aspoof (Figs. 3.1 and 3.2). Spoofs

represent non-generic configurations, where various elements of a drawing are precisely

aligned in order to create the illusion of interwoven surfaces.

26

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

(2) Paste.

(1) Start with the right ring on the
bottom. Copy just the right ring
in the selected rectangle.

(3) Place the spoof precisely
 over its original position,
 on top of both rings.

(4) The spoof is brittle. If either
ring is moved, the spoof breaks.

Figure 3.1: A spoof is a process by which the illusion of interwoven surfaces is constructed in a
layered system. The underyling representation does not match the final rendered image. See also
Fig. 3.2.

Figure 3.2: The figure on the left shows the DAG for the three components of the spoof in Fig. 3.1.
While the illusion of interwoven surface has been created, the underlying representation is still a
partial ordering, as required by existing drawing programs. The figure on the right shows an oblique
view of the canvas, with the layers vertically spread apart to illustrate the spoof’s construction.

27

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

3.1.2 Painting Planarized Graphs

Another method for constructing an image that has the appearance of interwoven surfaces

is painting planarized graphs, which was briefly discussed in Section 1.4. This method

consists of converting a drawing of boundaries that represent overlapping surfaces (Fig.

3.3, top left) into a planar graph where vertices represent boundary crossings and edges

represent boundary segments (Fig. 3.3, top right). Once the drawing has been converted

to a planar graph, each face of the graph can be independentlypainted(or filled) with a

color of the user’s choosing (Fig. 3.3, center left). With a proper assignment of paint

colors to the faces of the graph, an image can be constructed which has the appearance of

interwoven surfaces (Fig. 3.3, bottom right).

28

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

Figure 3.3: Painting a planarized graph begins by representing a set of boundaries (top left) as a
planar graph (top right). The graph can be colored by painting faces of the graph with a fill color
(center left). By carefull assignment of paint colors to the faces of the graph, an image can be
constructed which has the appearance of interwoven surfaces (bottom right).

29

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

3.1.3 Local DAG Manipulation

To our knowledge, the only program that makes a purposeful attempt to solve the program

of representing interwoven surfaces isMediaChance’s Real-Draw Pro-3(see Voska [42]).

Real-Drawstarts out with a basic layered representation, but then provides a special tool

called thepush-back. This tool lets the user define a region of the canvas where the partial

ordering can be locally altered. The layer that resides at depth zero within the selected

region can be pushed down to an arbitrary depth, placing it beneath some or all of the

(previously) deeper layers. Although the depth ordering of surfaces below the surface that

is at depth zero by default cannot be altered, this operation is sufficient to create most

kinds of interwoven images (Fig. 3.4).

3.2 Affordances of Conventional Drawing Programs

One might ask, if spoofs, painting planarized graphs, and local DAG manipulation are

sufficient methods for creating rendered images of interwoven surfaces, what difference

does it make if the underlying representation of the drawing does not correspond to the

21/2D scene which is perceived? Our answer lies in an analysis not of thecapability of

these methods (these methods are fully capable of creating images which are perceived as

interwoven surfaces), but in the unnaturalness and labor intensiveness of these methods.

Spoofs are tedious to construct, requiring many steps to be performed with precision.

Furthermore, they are brittle because once a spoof has been constructed, any alterations

to the drawing will require the spoof to be redone. Likewise, planarizing a drawing then

painting the faces of the graph independently requires many intermediate steps which must

be performed in a precise manner in order to achieve the desired effect.

The push-back tool used byReal-Drawis the easiest method of the three listed above,

but it is not ideal. One problem withReal-Draw’sapproach is that it is merely an incre-

30

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

Figure 3.4:Real-Drawprovides apush-backtool, which allows the user to define a region of the
canvas and then manipulate the ordering of the layers within that region. The sequence shown here
illustrates how this manipulation is accomplished, in the order left to right, top to bottom.

mental improvement over a global layering system. Consequently, the actual interface for

manipulating surfaces inReal-Drawis awkward and counterintuitive. It relies on the use

of a new kind of object on the canvas, thepush-back object. Because the push-back object

does not reflect the way humans perceive and reason about surfaces, it is not a natural

representation for overlapping surfaces,i.e., it does not possessnatural affordances (see

Section 2.2),i.e., affordances that are isomorphic between the drawing and the surfaces

being depicted.

Additionally, because the push-back object is an object on the canvas, it must be kept

31

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

properly aligned with the surfaces it is associated with. If the user adjusts the locations

of surfaces that are associated with a push-back, the user must also adjust the location

and scale of the push-back object to make sure it still encompasses the relevant region

of the canvas. Furthermore, the introduction of new surfaces into an existing push-back

object’s region requires that the old push-back object be replaced. We believe that a labeled

knot-diagram-based representation, offering better affordances, and which makes fewer

demands on the user, is a better solution.

More significantly,Real-Drawdoes not span the space of 21/2D scenes. There are

two situations where this can arise. The first situation occurs when the user attempts to

create a surface that overlaps itself. A single label is used to represent each surface in the

global surface DAG, even when that surface overlaps itself. Since a push-back only allows

the reordering of layers based on labels in the DAG, there is no way for a push-back to

represent or manipulate the multiple coverings implicit in a self-overlapping surface. The

primary cause of this problem is that the push-back presents an interface for manipulating

local DAGs, but the surface labels remain properties of a global DAG. The reliance on an

underlying DAG is a fundamental deficiency inReal-Draw’srepresentation (Fig. 3.5).

An additional problem withReal-Drawis that since the push-back object only allows

the depth zero object to be pushed down, there is no way to manipulate the ordering of

deeper layers. If surfaces are opaque this does not matter since only the depth zero surface

will be visible. However, if surfaces are transparent, then the ordering of deeper layers

might affect the appearance of a region where multiple surfaces overlap (depending on the

exact transparency model used).

In theory, the basic idea of a push-back object could be elaborated to allow a more

comprehensive manipulation of the surface depths. However, the more serious problem of

self-overlapping surfaces would remain unaddressed.

In contrast,Druid’s user interface has affordances which are isomorphic to those of

32

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

idealized physical surfaces,i.e., elemental scene changes are achieved through minimal

or straight-forward user-interactions,e.g., a single mouse click. Consequently, interacting

with Druid is much more natural and intuitive than interacting with conventional drawing

programs. The user’s experience when usingDruid is that of interacting with real surfaces,

not an imitation of surfaces.

Figure 3.5:Real-Drawcannot properly represent self-overlapping surfaces. Since a surface has
only one label in the surface layer list, there is no way to manipulate the relative depths where
a single surface covers a region at multiple depths. For this reason,Real-Drawcannot represent
self-overlapping surfaces. The overlapping region is rendered with empty space, as shown here.

33

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

3.3 Stages in Drawing Program Evolution

Druid represents a new kind of drawing program that is more powerful than existing pro-

grams. It is possible to describe a progression of drawing program functionalities. This

progression classifies drawing representations in three stages of increasing generality:

1. Drawing representations which assume aglobalDAG on the surfaces

2. Drawing representations which allow different DAGs in different regions of the can-

vas

3. Labeled knot-diagrambased representations.

Stage 1 consists of programs based on representations that can be described as layers of

constant depth, and includes virtually all existing drawing programs.

Stage 2 consists of programs based on drawing representations which still rely on a

partial ordering of the surfaces, but which allow the user to define special regions of the

canvas where the partial ordering will differ from the default DAG. To our knowledge, the

only program in this category isMediaChance’s Real-Draw Pro-3(see Voska [42]), which

was described in Section 3.1.3.

Stage 3 consists of drawing programs based on representations that do not rely on any

notion of a partial ordering of the surfaces. Such a representation contains only localized

information about the depths of various surfaces in each region. We do not know ifDruid’s

representation is the best representation of this type, but it has been proven thatDruid’s

representation is sufficient to represent the full space of 21/2D scenes (see Williams [44]).

34

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

3.4 Demonstration ofDruid

Up to this point, this chapter has illuminated the weaknesses inherent in attempting to

construct interwoven 21/2D scenes with conventional drawing programs. In this section

we offer a demonstration of howDruid is used for the purpose of comparison. The best

way to appreciateDruid’s power is to see someone use it. In print, we can most effectively

do this by showing a sequence of screen captures, much as we have done in the previous

sections.

Fig. 3.6 demonstrates howDruid is used. Druid uses closed B-splines to represent

the boundaries of surfaces. Spline control points are defined in either a clockwise order

to create internally bounding boundaries (A) or in a counter-clockwise order to create

externally bounding boundaries (B andD). Crossings can be clicked to reverse the relative

depths of areas where surfaces overlap (C andE). We call this interaction acrossing-flip.

Whenever the current labeling islegal, i.e., whenever all crossings satisfy the labeling

scheme, the drawing can berendered(F).

Note that there is a natural logic to the operations in Fig. 3.6. For example, to alter

the depth ordering of various overlapping surfaces, the user merely clicks on a crossing

to invert its crossing-state.Druid then does all of the computation necessary to keep the

labeling legal. This computation consists of searching the space of legal labelings for a

labeling which satisfies the constraint that the new crossing-state represents. Compare

this mode of interaction with either the spoof approach associated with Stage 1 drawing

programs or with the push-back approach associated with Stage 2 drawing programs,i.e.,

Real-Draw. Construction of a spoof that appears likeE would be quite tedious. Worse

yet, to invert the relative depth ordering within an overlapping area, the spoof would have

to be completely rebuilt. If one were to useReal-Draw, push-back objects would have to

be explicitly created for each desired overlap and would have to be maintained if the user

were to move the various surfaces around.

35

Chapter 3. Comparison Between Conventional Drawing Programs and Druid

Figure 3.6: Demonstration ofDruid. Spline control points are defined in either a clockwise order
to create internally bounding boundaries (A, numbers denote control point order) or in a counter-
clockwise order to create externally bounding boundaries (B andD). Crossings are clicked to flip
overlapping surface regions (C andE). Whenever the drawing is legally labeled (B - E), the figure
can be rendered (F rendersE). In this example, the surface has been made partially transparent.

36

Chapter 4

Druid’s Representation: Labeled

Knot-Diagrams

In Chapter 3 we described three methods by which images of interwoven surfaces could be

constructed using conventional drawing programs. We then described how these methods

can be improved upon by using a more general representation,i.e., one which makes no

assumption of layers. At the end of Chapter 3 we demonstrated our system,Druid. In this

chapter we describeDruid’s novel representation for scenes of surfaces called alabeled

knot-diagram. We then describe a set of natural constraints called thelabeling schemeon

the ways in which surface boundaries appear in 21/2D scenes. To alleviate potential confu-

sion about the justification for the labeling scheme, we motivate it with a pictorial example

consisting of a photograph of physical surfaces,i.e., a scene of overlapping pieces of pa-

per. In the Chapter 7 we will describe howDruid assigns a legal labeling to a particular

drawing in order to present the user with a scene that represents a set of idealized physical

surfaces.

37

Chapter 4. Druid’s Representation: Labeled Knot-Diagrams

4.1 Labeled Knot-Diagrams

In order to build a Stage 3 drawing tool, it is necessary to develop a fundamentally new ap-

proach for the representation of drawings. Existing drawing programs represent a drawing

as a set of surface boundaries which reside in distinct layers,i.e.a DAG, thus precluding an

interwoven arrangement. In contrast, a Stage 3 program represents the boundaries of sur-

faces in a localized way that does not assume surfaces are arranged into a DAG. A Stage

3 program relies on the fact that local depth changes always occur at surface boundary

crossings.

Our system,Druid, represents a 21/2D scene as alabeled knot-diagram(see Williams

[44]). A knot-diagramis a projection of a set of closed curves onto a plane and indicates

which curve is above wherever two curves intersect (Fig. 4.1). Williams extended ordinary

knot-diagrams to include asign of occlusionfor every boundary and adepth indexfor

every boundary segment (Fig. 4.1). The sign of occlusion is illustrated with an arrow and

denotes a bounded surface to the right with respect to a traversal along the boundary in the

arrow’s direction.

4.2 Labeling Scheme

Chapter 7 describes the algorithmDruid uses to assign a labeling to a knot-diagram. The

process of assigning a labeling is similar to Huffman’sscene-labeling(see [20]), in which

he developed a system for labeling the edges of a scene of stacked blocks. InDruid’s case,

the labeling consists of signs of occlusion, crossing-states, and segment depth indices. The

labeling schemeis a set of local constraints on the relative depths of the four boundary

segments that meet at a crossing (Fig. 4.2). There are four rules of the labeling scheme:

1. The upper boundary must have the same depth on both sides of the crossing.

38

Chapter 4. Druid’s Representation: Labeled Knot-Diagrams

0

1

1

1

11

1

1
1

1
1

1

1

1
1

1

1
1

1
1

1

1

1

0

0

0

0

0

0

1

0

0

1

Figure 4.1: Aknot-diagram(left) is a projection of a set of closed curves onto a plane together with
indications which show which curve is on top at every crossing. Alabeled knot-diagram(right, see
Williams [44]) is a knot-diagram with a sign of occlusion for every boundary and a depth index for
every boundary segment. Arrows show the signs of occlusion for the boundaries, always denoting a
surface bounded to the right of a boundary with respect to travel along the boundary in the direction
of the arrow. The sign of occlusion can also be denoted using hash marks. Some depth indices of
depth zero have been omitted for clarity.

2. The lower boundary must differ in depth by exactly one across the crossing.

3. The lower boundary must be deeper on the occluding side of the upper boundary.

4. The lower boundary must be no shallower than the upper boundary on the unocclud-

ing side of the upper boundary.

If every crossing in a labeled knot-diagram satisfies the labeling scheme, the labeling is

a legal labelingand accurately represents a scene of topologically valid surfaces. Legal

labelings can berendered, i.e., translated into images (the process for which is described

later) in which the interiors of surfaces are filled with solid color.

39

Chapter 4. Druid’s Representation: Labeled Knot-Diagrams

x

x

y ≥ x y + 1

Figure 4.2: Thelabeling scheme(see Williams [44]) is a simple set of constraints on the depths
of the four boundary segments that meet at a crossing. If every crossing in a labeling satisfies the
labeling scheme then the labeling is alegal labelingand can be rendered.x is the depth of the upper
boundary. The upper boundary must have the same depth on both sides of the crossing.y is the
depth of the unoccluded half of the lower boundary. The lower boundary must have a depth ofy +
1 in the occluded region (shaded), as defined by the upper boundary’s sign of occlusion. Finally,
the lower boundary must reside beneath the upper boundary. Thus,y must be greater than or equal
to x.

4.3 Motivating the Labeling Scheme

The labeling scheme may seem counter-intuitive at first glance. For example, it might

be confusing thaty is permitted to be equal tox in Fig. 4.2 if the lower boundary must

reside below the upper boundary. The labeling scheme is a natural consequence of the

ways in which the boundaries of two surfaces can cross. To assist in the visualization

and comprehension of the labeling scheme, it is helpful to motivate it using a set of real

surfaces as an example. Fig. 4.3 (left) shows a photograph of three pieces of paper in an

overlapping arrangement. Fig. 4.3 (right) shows the labeled knot-diagram that describes

this scene overlayed on the original photograph. From the information provided in Fig.

4.3 (right) it is possible to motivate the rules of the labeling scheme. In the crossing

on the left side of the photograph, the two boundaries cross with no intervening surface

between them. Such a crossing corresponds to a situation in whichy = x. In the crossing

40

Chapter 4. Druid’s Representation: Labeled Knot-Diagrams

in the center of the photograph, there is an intervening surface between the two crossing

boundaries. Such a crossing corresponds to a situation in whichy > x.

Figure 4.3: The labeling scheme can be motivated by studying a scene of real surfaces. The left
figure shows a photograph of overlapping pieces of paper. The right figure shows the labeled knot-
diagram for this scene overlayed on the original photograph. The rules of the labeling scheme (Fig.
4.2) follow from a study of the relative depths of boundary segments at crossings.

41

Chapter 5

Labeled Knot-Diagram Spaces

For a given knot-diagram, there are numerous possible labelings. Only a small subset

of those will be legal,i.e., will conform to the labeling scheme at all crossings and thus

describe a set of plausible physical surfaces. A simpler program thanDruid might let the

user manually assign elements to a labeling in the hopes of successfully constructing a

legal labeling. However, not only would such an approach be tremendously burdensome

on the user, it would not possess the correct affordances,i.e., user interactions would not

correspond to elemental scene changes.Druid is much more than a labeled knot-diagram

editor. It is an intelligent 21/2D scene editor. It understands the semantics of 21/2D scenes,

i.e., it can distinguish legal labelings from illegal labelings by using the labeling scheme

as a mechanism for interpreting a potential labeling.

Druid automatically produces a legal labeling for the user whenever possible. This

happens despite the fact that there are a large number of illegal labelings for a given figure.

It maintains a legal labeling by automatically finding a new legal labeling without any

prompting from the user whenever a labeling invalidating change occurs,i.e., a topological

change such as the creation of new crossings. The space through whichDruid searches

for a new labeling is called thesearch space.

42

Chapter 5. Labeled Knot-Diagram Spaces

In the previous chapters we describedDruid’s representation, labeled knot-diagrams,

and we described a constraint on 21/2D scenes, the labeling scheme. We then demonstrated

how Druid is used with a sequence of screen captures. In this chapter we describe the

search space. Later in this chapter we describe the depth ranges of a labeled knot-diagram.

This information must be determined before the labeling search can proceed. Finally, we

present therelaxed labeling scheme, similar to the original labeling scheme, which is used

to determine the depths ranges for a labeled knot-diagram.

5.1 The Search Space

Druid must search through a space of possible labeling assignments in order to find a legal

labeling when a user-initiated change occurs. Given an unlabeled drawing, there exists a

set of possible legal labelings that can be assigned to that drawing. When the user interacts

with the drawing, the interaction may invalidate the current labeling. The task forDruid

is to fix the illegal part of the drawing by searching the labeling space for a new legal

labeling.

The primary goal of the search is to find theminimum-difference labelingwith respect

to the labeling prior to the change. Therefore, this goal motivates the organization of the

search process. The user communicates his intent by specifying a single constraint on

the new labeling.Druid then deduces the remaining constraints by searching for a legal

labeling that satifies the user’s explicit constraint. In this way,Druid deduces the user’s

intentions automatically, thereby minimizing the user’s effort.

The size of the search spaceL(t ∈ T) corresponds to the number of distinct labeling

assignments that are possible for the underlying knot-diagram, regardless of whether those

labelings are legal or illegal. The space of consistent labelingsC(t ∈ T) is a proper subset

43

Chapter 5. Labeled Knot-Diagram Spaces

of the space of all labelingsL(t ∈ T):

C(t ∈ T)⊆ L(t ∈ T) (5.1)

where:

1. T is the infinite space of all drawing topologies

2. t ∈ T is a specific instance ofT

3. L(t ∈ T) is the space of possible labelings givent

4. C(t ∈ T) is the subset ofL that is consistent (legal).

T consists of all possible knot-diagrams with unspecified crossing-states and no depth

indices, but with specified signs of occlusion. In other words, eacht ∈ T is a unique

partial labeling, meaning that some elements are labeled and others are not. As stated,

signs of occlusion are specified in instances ofT, but crossing-states and segment depths

remain unspecified (Fig. 5.1) because the user specifies signs of occlusion when he creates

boundaries.

For any individualt ∈ T there existsL(t) the space of possible labelings for that specific

drawing topology (Fig. 5.2).C ⊆ L is the subset ofconsistent(legal) labelings withinL,

i.e., labelings in which all elements of the knot-diagram satisfy the labeling scheme and

consequently which can be rendered (Fig. 5.2, right column).

Both L andC are connected graphs (Fig. 5.3). InL, edges connect pairs of labelings

that differ by a labeling distanceL∆ = 1, i.e., a single crossing-state or segment depth. InC,

edges connect pairs of consistent, legal labelings that can be transformed into one another

through a single user interface action such as a mouse click,i.e., pairs of legal labelings

that have an edit-distance,C∆ = 1.

44

Chapter 5. Labeled Knot-Diagram Spaces

a) b)

c)

Figure 5.1: The space of all drawing topologies,T, is infinite. Some instances are shown here.
Note that signs of occlusion are specified and distinguish otherwise identical topologies (a andb),
but crossing-states and depth indices are not specified.

5.2 Graph Distance Between Labelings

The root of the search tree is a consistent labeling, a member ofC(t ∈ T), e.g., nodev

in Fig. 5.3. The goal of a minimum-difference search originating fromv is to find the

consistent labeling with the minimum graph distance inC from v, e.g., u or x in Fig. 5.3

(for both of whichC∆ = 1 andL∆ = 2).

We can compute the size ofL(t ∈ T) and an upperbound on the size ofC(t ∈ T) by

calculating the number of unique assignments of labeling features to a particular knot-

diagram topology. Since crossing-states take on two values their number of combinations

is 2R for R crossings. This represents the size ofL. Although a labeled knot-diagram

45

Chapter 5. Labeled Knot-Diagram Spaces

Figure 5.2: The space of labelingsL for a particular topology,t ∈ T. The labeling space consists of
all combinations of crossing-states for that topology. This figure showsL(t ∈ T) corresponding to
item c from Fig. 5.1. The four possible legal labelings are shown in bold with their corresponding
renderings shown in the right column. They representC(t ∈ T) ⊆ L(t ∈ T). In this figure, horizon-
tally and vertically adjacent labelings have a crossing-state difference of 1,i.e., they are connected
by an edge inL. Diagonally adjacent legal labelings (bold) can be transformed into one another
with an edit-distance of 1,i.e., they are connected by an edge inC. The observation that adjacent
pairs of legal labelings on the diagonal have a difference of 1 is the same as the observation that
adjacent pairs of the the four renderings in the right column have a difference of 1. Note that the
labeling space is periodic in both dimensions, so the top row is adjacent to the bottom row, etc.

includes signs of occlusion and boundary segment depths, we don’t include either of these

variables in the search space. The user designated the signs of occlusion when he created

the boundaries and boundary segment depths uniquely follow from the crossing-states,

so neither is relevant to the search. SinceL is a superset ofC, the size ofL, i.e., 2R,

represents an upper bound on the size ofC. Note that while boundary segment depths are

easy to determine on a legally-labeled figure, they are actually impossible to determine

on an illegally labeled figure. In fact, we define an illegal crossing-state instantiation as

one for which there is no boundary segment depth assignment which satisfies the labeling

scheme at all crossings in the drawing.

46

Chapter 5. Labeled Knot-Diagram Spaces

A node with an illegal labeling in L

A node with a legal labeling in L (thus, a node in C)

u

xv

L = 1∆

C = 1∆

vertices of L
vertices of L & C
edges of L
edges of C

Figure 5.3:L(t ∈ T) is a connected graph where nodes are labeled figures and edges denote labeling
distanceL∆ = 1. C(t ∈ T) ⊆ L contains the consistent, legal labelings withinL. C(t ∈ T) is also
a connected graph. Edges ofC (shown as curves) denote user interface edit-distances of 1,e.g., a
single mouse click.

47

Chapter 5. Labeled Knot-Diagram Spaces

For drawings of a moderate sizeL can be extremely large given that we wantDruid

to perform fast enough to not annoy the user. Fast feedback is an important aspect of

direct manipulation interfaces. Norman and Draper argue that fast feedback reduces the

user’s awareness of the computer as a barrier between themselves and the drawing. In our

case, this contributes to the user’s perception that he is interacting with real surfaces (see

Norman [34]).

In Fig. 5.4, the size ofL for each of the three drawings from left to right is one,

four, and sixty-four respectively, while the size ofC for the three drawings is 1, 2, and 6

respectively. This figure illustrates the fact that the size ofL increases rapidly relative to

the complexity of the drawing and that the ratio of the size ofC to the size ofL drops off

quickly relative to the complexity of the drawing. SinceL represents the potential search

space andC represents acceptable solutions to the search, there is an inherent challenge in

performing the search quickly. Performing the search quickly is crucial since it must be

done fairly often and should occur with minimal inconvenience for the user. The primary

focus of our research has been to find methods which can perform the search fast enough

to not annoy the user, namely turnaround times of less than a second.

5.3 Calculating the Depth Ranges for a Labeled Knot-

Diagram

The depth ranges that a boundary can assume need to be calculated before the figure can

be labeled. Therefore, an efficient algorithm for finding the depth ranges is required. To

solve this problem we have framed the task of finding the depth ranges for all segments for

a particular topology as a new kind of labeling problem, similar to the labeling problem

described at the beginning of Section 5.1. The challenge is to label a knot-diagram in

the fashion shown in Fig. 5.4, where crossing-states remain unspecified but all segments

48

Chapter 5. Labeled Knot-Diagram Spaces

have a range of possible depths associated with them. Thisrelaxed labeling problemis

similar to the original labeling problem where the goal is to assign a single index to each

segment. In the original labeling problem the index is the actual depth of the segment

in a topologically valid labeling. In a relaxed labeling the index is thedepth rangefor

a segment,i.e., the maximum depth that a segment can assume among all topologically

valid labelings.

0 0 0

[0-1]

[0-1]

00

[0-1]

[0-1]

[0-1]

[0-1]

[0-1]

[0-2]

[0-2]
[0-2]

0

[0-1]

Figure 5.4: For a particular labeled knot-diagram, each boundary segment has a range of possible
depths that it can assume, depending on how many surface coverings it overlaps. These figures
show three simple examples with the depth ranges for each boundary segment indicated.

The constraints of the relaxed labeling scheme in Fig. 5.5 can be stated as follows:

1. SegmentB must have a depth range that is one deeper than segmentA.

2. SegmentC must have a depth range that is one deeper than segmentD.

3. SegmentsA andD must have the same depth range (and likewise for segmentsB

andC).

The solution to the relaxed labeling problem can be formulated as a system of linear equa-

49

Chapter 5. Labeled Knot-Diagram Spaces

x + 1

x

x + 1x

Figure 5.5: Therelaxed labeling schemeis a set of constraints on the depth ranges of the four
boundary segments that meet at a crossing. Each boundary occludes the half-plane on its right.
Thus, for the two boundaries meeting at a crossing, one half of each boundary will lie in theunoc-
cludedhalf-plane of the opposing boundary, and the other half will lie in thepotentially occluded
half-plane of the opposing boundary. The shaded regions in the figure show the potentially oc-
cluded half-planes of each boundary. The two segments with a depth range ofx are unoccluded.
The two segments with a depth range ofx+1 are potentially occluded. The relaxed labeling scheme
requires that the potentially occluded segments of a crossing have a depth range that is one greater
than the depth range of the unoccluded segments and that the two boundaries have the same depth
ranges as each other.

tions which can be solved by Gauss-Seidel or Jacobi iteration:

−1 0 1 0 . . .

0 1 0 −1 . . .

0 1 1 0 . . .
...

...
...

...
.. .

A

C

B

D
...

=

1

1

0
...

 (5.2)

where A, B, C, and D are the segment depth ranges for a particular crossing and the right

column vector according to Fig. 5.5.

Unfortunately, generalized equation solving methods such as Gauss-Seidel or Jacobi

iteration do not take advantage of constraints specific to the problem at hand,e.g., once a

potential depth range for a segment has been found, an intelligent algorithm would only

50

Chapter 5. Labeled Knot-Diagram Spaces

permit deeper depth ranges in subsequent iterations and never revert to shallower depth

ranges. This constraint results from the fact that any shallower depth range is naturally

a subset of a deeper depth range. Therefore, once a depth range has been found, there

is no reason to ever consider shallower depth ranges, only deeper depth ranges. Neither

Gauss-Seidel nor Jacobi iteration takes advantage of this fact. Consequently, these general

purpose methods are not necessarily an efficient way to solve this system of equations.

Additionally, iterative methods are not always guaranteed to converge to a solution or con-

vergence might be quite slow. For these reasons, we have devised an iterative algorithm

that determines the depth ranges by acting directly on the knot-diagram in a series of itera-

tive passes, starting from depth zero and accumulating maximum depths for the segments

incrementally. The algorithm terminates when the depth ranges converge on their deepest

possible values.

51

Chapter 6

Editing 21/2D Scenes

In this chapter we begin by comparing the concepts of scene editors and drawing represen-

tation editors. We describe how conventional drawing programs are representation editors

while Druid is in a sense we will expand on in detail, actually asceneeditor. Following

this discussion we describe howDruid handleslabeling preserving interactions, defined

below.

In previous chapters we have described labeled knot-diagrams, legal labelings, and the

search space. In Chapter 7 we will describe the methodDruid uses to search through the

search space for a legal labeling. Before we do that, however, it is necessary to distinguish

between those user-interactions which require a search for a new legal labeling and those

which do not. The interactions presented in Section 2.1 can be classified into two cat-

egories:labeling preserving interactionsand interactions requiring relabeling. Labeling

preserving interactions must be performed such that crossing-states are preserved through-

out their course. This requirement precludes the naive method of deletion and rediscovery

of the crossing-states. Therefore,Druid uses a process we callcrossing-projectionto cal-

culate the new location of a crossing after it has moved. We describe crossing-projection

in this chapter.

52

Chapter 6. Editing 21/2D Scenes

Later in this chapter we describe two methods whichDruid uses to improve its perfor-

mance and reduce the risk of crossing-projection errors. These two methods aredelayed

responseandminimum acceptable mouse distance. Interactions come in two forms, dif-

ferent from the two classifications listed above. They can be continuous or discontinuous.

Dragging a boundary is continuous for example, while flipping a crossing is discontinu-

ous. During continuous interactions, we want the fastest turnaround times possible in order

to achieve smooth animation-like feedback instead of stuttered frame-by-frame feedback.

Delayed response is a method for maximizing the likelihood of fast smooth response times

during continuous user-interactions. Minimum acceptable mouse distance is a method for

minimizing crossing-projection errors. If the mouse moves too far in a single step, there

is a risk thatDruid will suffer from errors in its crossing-projection algorithm. Minimum

acceptable mouse distance helpsDruid minimize the risk of these errors by imposing a

minimum distance between perceived mouse interrupt locations.

6.1 21/2D Scene Editors vs. Drawing Representation Edi-

tors

At the beginning of Chapter 5 we described howDruid is much more than merely a labeled

knot-diagram editor, it is actually a 21/2D scene editor. UnlikeDruid, Real-Drawessen-

tially is an editor for its internal representation. The internal representation ofReal-Draw

is a global DAG with localized regions specifying local DAG changes. The manipulations

the user performs inReal-Drawequateedit-distancesof exactly one withrepresentation

distancesof exactly one. An edit-distance is the total number of mouse clicks and key

presses necessary to transform one instance of a program’s representation into another. A

representation distance is the number of edges along the shortest path connecting two rep-

resentations in the graph of all representations, given a graph of representations in which

the presence of an edge signifies an elemental transformation between two representations.

53

Chapter 6. Editing 21/2D Scenes

An elemental transformation on a representation is a transformation in which a single pa-

rameter of a representation is altered. SinceReal-Drawequates edit-distances of one with

representation distances of one, the user is directly manipulatingReal-Draw’srepresenta-

tion. Direct manipulation of the representation not necessarily a good design. There are

situations where the user’s intention may require navigating a large representation distance

to achieve a small 21/2D scene transformation distance, thus requiring the user the man-

ually transform the starting representation to the desired representation through several

intermediate representations. This long sequence of steps is tedious and distracts the user

from his larger goals. For example, if the user wants to invert the ordering of a pair of

overlapping surfaces, that goal corresponds to a 21/2D scene transformation of size one,

i.e., anelemental scene transformation. However, in order to achieve such a manipula-

tion with Real-Draw, the user must perform several steps. The push-back tool must be

selected, the push-back object must be created and carefully placed in the proper location,

and it is possible the push-back’s default reordering must be adjusted to properly alter the

depths within the push-back’s region. Therefore, the actions of the user do not correspond

to transformations of the scene, the user’s actions correspond to transformations of the rep-

resentation. Consequently, the affordances ofReal-Draware not isomorphic with those of

21/2D scenes. Rather, they are isomorphic with transformations ofReal-Draw’sinternal

representation, which is of no actual interest to the user. To summarize,Real-Drawrep-

resents a genuine improvement over spoofs because it requires far fewer and less delicate

steps than construction of a spoof requires, but it still requires more steps than would be

necessary using a program which provides the natural affordances of 21/2D scenes.

Druid’s power derives from its ability to quickly search through the space of labeled

knot-diagrams for legal labelings. It presents the user with the experience of directly

interacting with a 21/2D scene, including interwoven scenes, rather than the experience

of interacting with one scene that has the appearance of a desired scene,i.e., creating a

spoof. The reason the user has such a qualitatively different experience when usingDruid

is that elemental scene transformations can be accomplished with single mouse clicks. It is

54

Chapter 6. Editing 21/2D Scenes

this isomorphism between editing operations and 21/2D scene transformations that makes

Druid so novel.

6.2 User Interactions

All drawing programs are, at some level, editors for their underlying representation. How-

ever, more so than with other drawing programs,Druid’s interface is abstracted away from

its internal representation. It is, in effect, an editor for 21/2D scenes. Consequently, the

user has the experience of interacting with a 21/2D scene instead of assigning labels to a

labeled knot-diagram. Several possible user interactions were listed in Section 2.1. The

effects of these interactions on the labeled knot-diagram can be grouped into two major

categories:

• Labeling-preserving interactions

• Interactions requiring relabeling.

Labeling-preserving interactionsare interactions in which the topology of the labeled

knot-diagram does not change. In contrast,interactions requiring relabelingare of the

following types:

• Drags or reshapes that create new crossings

• Drags or reshapes that delete existing crossings

• Drags or reshapes that change the order of existing crossings along the boundaries

• Change of the crossing-state of a crossing (flippinga crossing)

• Change of the sign occlusion of a boundary (flipping a sign of occlusion).

In the following sections we describe howDruid handles these two kinds of interactions.

55

Chapter 6. Editing 21/2D Scenes

6.2.1 Labeling-Preserving Interactions

Ideally, Druid should preserve the labeling during user interactions whenever possible

because doing so provides a sense of continuity for the user. In other words, we assume

that the user does not want the labeling to change arbitrarily while he is altering a drawing

because if it did, it would prevent him from being able to construct the 21/2D scene he has

in mind. Labeling changes should only occur as the result of explicit constraints that the

user specifies. At all other times, the labeling must be preserved so the user can maintain

control over the drawing process.

When one boundary is dragged over another boundary, the crossings involved in both

boundaries will move. The goal of preserving the crossings’ states during such interac-

tions precludes the naive method of deletion and rediscovery of crossings since such an

approach would destroy the crossing-states. The effect of destroying the crossing-states is

that the knot-diagram would have to be relabeled before the labeling would be legal again.

While relabeling can be performed fairly quickly, efficiency is not the only concern. It

is also crucial that the labeling following a non-topology-altering interaction match the

labeling prior to the interaction. Because there is no way of guaranteeing that the new

crossing-states (those discovered after relabeling) will match the old crossing-states, the

naive method is infeasible. The only alternative is to avoid the relabeling whenever possi-

ble.

For some interactions,e.g., drags and reshapes which do not alter the topology, the la-

beling can be preserved by projecting crossings along the paths they follow on the bound-

aries (Fig. 6.1). This method is more complicated to implement than the naive method,

but it is the key toDruid’s responsiveness.

The process of projecting crossings to their new locations during a move or reshape of a

boundary is calledcrossing-projection. The algorithm that performs crossing-projection is

simple in its outline but more complicated in its details. The goal is to explicitly complete

56

Chapter 6. Editing 21/2D Scenes

stationary boundary

moving boundary

crossing A

1
2

3
4

5
6

drag direction

time step

crossing B

Figure 6.1: Dragging one boundary over another does not always alter the topology of the drawing.
In such cases, it is best to preserve the crossings by predicting their new locations rather than
deleting crossings and rediscovering them from scratch. In the above figure, the topology of the
knot-diagram does not change over time. Only the locations of the two crossings change.

the path that a crossing follows around a boundary. This algorithm is relatively complex

because there are a number of special cases that must be properly detected and handled,

e.g., the disappearance of a crossing, which requires relabeling.

The algorithm is illustrated using a detailed example in Fig. 6.1, where the user has

dragged the lower boundary in a diagonal direction toward the upper-right in six discrete

timesteps. Observe that the boundary moves discretely, from one location to another, and

not continuously. These discrete jumps result from two factors. The first is that there is a

latency between mouse-generated hardware interrupts, during which the mouse will drag

a shape an unspecified distance. The second factor is the pixelization of the canvas that

57

Chapter 6. Editing 21/2D Scenes

the user is drawing on. B-spline control points can only be dragged to and from integer

pixel coordinates, and therefore exist in a discrete space. For these reasons, the crossing-

projection algorithm assumes discrete timesteps and crossing locations.

Fig. 6.1 shows a straight-linedrag consisting of six timesteps. Between Timesteps

4 and 5, crossing A moves from one segment of the stationary boundary to an adjacent

segment of the same boundary. Likewise, crossing B switches segments on the stationary

boundary between Timesteps 2 and 3, and again between Timesteps 5 and 6. Addition-

ally, crossing B switches segments on the moving boundary between Timesteps 5 and 6.

Although not illustrated in Fig. 6.1, it is in fact possible for a crossing to traverse more

than one segment during a single timestep, especially when the segments are very short,

or when the direction of motion is nearly orthogonal to the segment’s orientation. The

process by which a crossing is projected over a distance of many segments in a single

timestep is shown in detail in Fig. 6.2. As a further example of the difficulty of the task

of predicting the motion of crossings, notice that between Timesteps 5 and 6 in Fig. 6.1,

crossing B switches segments on both of its associated boundaries in a single jump. Fig.

6.2 illustrates this case in greater detail.Druid must be able to handle all these cases.

The crossing-projection algorithm is invoked after each timestep. All crossings that

the boundary’s movement affects are immediately projected to their new locations. Since

Fig. 6.1 illustrates six distinct timesteps, it represents six invocations of the crossing-

projection algorithm for each of the two crossings shown. The algorithm requires that the

positions of all boundaries be known both before and after the motion. First, the users

drags a boundary. Second,Druid detects that a change has occurred and calculates the

new location of the boundary. Third, the crossing-projection algorithm is performed to

project the crossings to their new locations.

58

Chapter 6. Editing 21/2D Scenes

Iteration 5

stationary
boundary

Iteration 1

A

a

Iteration 2

B

b

Iteration 3

C

c

Iteration 4

D

Iteration 0

original
crossing
location

d

moving
boundary
before
jump

moving
boundary
after
jump

Figure 6.2: The sequence of drawings shown here illustrate successive iterations of the crossing-
projection algorithm. Thick line segments show the segment pair associated with the crossing at
the beginning of each iteration. Circles show the intersections of the lines containing the segments.
Lowercase labeled segments (a-d) show the segment that will be switched out of the pair assignment
at the end of that iteration. Uppercase labeled segments (A-D) show the segment that will be
switched into the pair assignment at the end of an iteration. After a timestep, the algorithm tests
the original segments assigned to the crossing (shown in Iteration 1). In the example illustrated,
the segments no longer intersect. Since the error (the distance past the end of each segment to the
point of intersection of the lines containing the segment pair) is greater for the moving boundary at
the beginning of Iteration 1, the moving boundary segment assigned to the crossing’s segment-pair
assignment will be switched froma to A. The process continues until a pair of segments is found
that actually intersect, as shown at the beginning of Iteration 5.

59

Chapter 6. Editing 21/2D Scenes

crossing-projection is performed by looping over all boundaries that have just been

altered in an outer loop, and then looping over all the crossings of each altered boundary

in an inner loop. Each crossing is individually projected to its new location.

crossing-projection is trivial if a crossing remains on its two assigned boundary seg-

ments after a boundary moves to its new location. If a crossing’s two boundary segments

still intersect after a drag or reshape is performed, then projecting the crossing is simply

a matter of updating the coordinates for the crossing. Handling such a situation is trivial

becauseDruid does not have to determine which segments the crossing has moved to,

since the crossing remains on the original segments. If the two original segments of the

crossing no longer intersect after the boundary is moved, then the more complex crossing-

projection algorithm described below must be performed, in which a new pair of segments

is found which intersect at the new boundary location.

Fig. 6.2 illustrates how a single crossing is processed for a single timestep. It illus-

trates a case in which the projection will be complicated to perform because the crossings

have moved many segments on both boundaries. Given a pair of segments belonging to a

crossing that no longer intersect after a boundary has been moved or reshaped (shown at

the beginning of Iteration 1 as a pair of bold segments), the algorithm enters a loop. Each

iteration of this loop updates the segment-pair assignment for the crossing by reassigning

one of the two segments for the crossing and preserving the other. The loop terminates

when the presently assigned pair of segments intersect.

Observe that between iterations in Fig. 6.2, one segment is retained while the other

segment switches to an adjacent segment of its boundary. The decision about which seg-

ment to retain is made by measuring the two errors (the distance past the end of each

segment to the intersection of the lines containing the segment pair) of the crossing with

respect to the two segments. The error for one segment is the distance between the cross-

ing and the nearest end of that segment. Notice that at the beginning of Iteration 1, the

error is less for the stationary boundary but that at the beginning of Iteration 2 the error is

60

Chapter 6. Editing 21/2D Scenes

less for the moving boundary. In each iteration, the segment with less error is retained and

the segment with the greater error is replaced with the adjacent segment of its boundary in

the direction closest to the point of intersection.

In some iterations, the crossing will only be in error on one of the two segments,e.g.,

Iteration 4. In such cases, the error for the segment that contains the crossing is zero.

Consequently, that segment is retained and the other segment is switched,e.g., as shown

between Iterations 4 and 5.

The loop repeats until the pair of segments actually intersect, as shown at the beginning

of Iteration 5. The new location of the crossing is then calculated and the crossing has been

successfully projected to its new location.

6.2.2 User Interactions Requiring Relabeling

While some user interactions do not require relabeling, other interactions cause changes to

the knot-diagram’s topology, and therefore, require a search for a new legal labeling. Such

interactions include:

• Drags or reshapes that create new crossings

• Drags or reshapes that delete existing crossings

• Drags or reshapes that change the order of existing crossings along the boundaries

• Change of the crossing-state of a crossing (flippinga crossing)

• Change of the sign occlusion of an boundary (flipping a sign of occlusion).

Devising an algorithm that can find the minimum-difference labeling quickly is difficult

because the search space can be extremely large relative to the complexity of the drawing.

The crossing-projection method described above helps to avoid unnecessary search, but at

other times, such as those just listed, a search is required. The labeling search is described

in Chapter 7.

61

Chapter 6. Editing 21/2D Scenes

6.3 Delayed Response

Druid should handle reasonably complex drawings with acceptably fast turnaround times

for as many user interactions as possible. However, some tasks are computationally ex-

pensive and consequently difficult to complete within acceptable turnaround times. Some

tasks thatDruid must perform include:

• Manipulation of B-splines,e.g., addition, deletion and translation of control points

(this will require recalculating the piecewise linear approximation of the splines)

• Redrawing the screen whenDruid’s view is in labeled knot-diagram mode

• Redrawing the screen whenDruid’s view is in rendering mode

• Tracking and projecting crossings as B-splines are manipulated

• Searching for equivalence classes on a labeled knot-diagram

• Assignment of a legal labeling to a knot-diagram (this might require a labeling

search)

• Searching for cuts and grouping boundaries that bound the same surface.

The ideal turnaround time should be fast enough that the user perceives continuous

changes,e.g., drags and reshapes, as a smooth animation instead of as a series of discon-

tinuous images since. Typically, smooth animation is achieved with a minimum framerate

of between 0.03s to 0.1s of a second.

We are aware of at least two methods for decreasing the turnaround time during com-

putationally expensive continuous changes. The first method is to operate on a simpler

representation during a continuous change and then revert to the default level of com-

plexity as soon as the continuous change is completed. One program that does this is

MetaCreations’s Bryce 2, a three-dimensional modeling program [29]. Bryce uses a typi-

cal wireframemethod of visualization for most interactive tasks and only renders a scene

when the user specifically directs it to do so. When the user rotates or moves the cam-

62

Chapter 6. Editing 21/2D Scenes

era, the wireframe complexity used to illustrate the various models is simplified,i.e., the

wireframe models are constructed with fewer vertices and edges. Once the camera stops

moving, the wireframe instantly reverts to the default level of wireframe complexity.

Another method for decreasing the turnaround time during computationally expensive

continuous changes is what we calldelayed response. Delayed response consists of clas-

sifying various tasks into two classes based on priority:

1. Critical priority

2. Default priority.

Critical priority is a subset ofdefault priority, i.e., all tasks of critical priority are also of

default priority. The default behavior is to perform all tasks at all times. However, during

times of continuous change, only tasks assigned critical priority are performed. By not

performing more expensive but less crucial tasks during continuous changes, a program’s

turnaround time can be reduced.

One set of programs which uses delayed response is theMyth series of three-

dimensional games byBungie[11], in which texture smoothing on the three-dimensional

terrain is disabled while the user is moving or rotating the camera, presumably to reduce

the turnaround time, and is reenabled after a brief period of camera inactivity.Druid uses

delayed response to decrease turnaround times during continuous changes as well.

The tasks listed above can be grouped into two major categories depending on their

relationship to the knot-diagram and to the labeling:

1. Knot-diagram tasks (critical priority):

• Manipulation of B-splines,e.g., addition, deletion and translation of control

points (this will require recalculating the piecewise linear approximation of

the splines)

63

Chapter 6. Editing 21/2D Scenes

• Redrawing the screen whenDruid’s view is in labeled knot-diagram mode

• Redrawing the screen whenDruid’s view is in rendering mode

• Tracking and projecting crossings as B-splines are manipulated.

2. Labeling tasks (default priority):

• Searching for equivalence classes on a labeled knot-diagram

• Assignment of a legal labeling to a knot-diagram (this might require a labeling

search)

• Searching for cuts and grouping boundaries that bound the same surface.

In general,knot-diagram tasksare both less expensive and more crucial thanlabeling

tasks, i.e., knot-diagram tasks are of critical priority. They are more crucial because the

knot-diagram cannot be presented to the user, regardless of whether it is legally labeled, if

it is not maintained at all times.

Thus, Druid performs knot-diagram tasks with higher priority than labeling tasks.

Whenever the user makes the slightest change to a boundary,Druid fully performs all

knot-diagram tasks before returning control to the user. SinceDruid fully performs the

necessary computation before allowing the user to proceed, these tasks must be done ex-

tremely quickly or else the user’s experience will be discontinuous.

Labeling tasks are not performed until the user has stopped moving the mouse for a

specified window of time,i.e., they are of default priority. We use 0.25s as this window of

time. Thus, as the user smoothly drags a B-spline control point across the display,Druid

continuously updates the piecewise linear calculation that estimates the spline’s shape,

continuously projects any moving crossings to their new locations, and continuously up-

dates the display by redrawing the labeled knot-diagram in whatever viewing mode the

user is currently using. However,Druid makes no attempt to label the knot-diagram until

the user stops moving the mouse for 0.25s. The need for a new labeling is closely asso-

ciated with most labeling tasks. Therefore, the task of assigning a new labeling broadly

64

Chapter 6. Editing 21/2D Scenes

encompasses other tasks such as finding equivalence classes, searching for cuts, etc. The

user’s experience is that the labeling is not being maintained during the mouse motion,

and that after stopping the mouse motion the labeling does not immediately update. How-

ever, very soon after stopping the mouse motion, the user sees the knot-diagram change to

reflect a new labeling.

It is interesting to note thatDruid attempts to update the display continuously,i.e., as a

critical knot-diagram task, regardless of whether the view is in labeled knot-diagram mode

or in rendering mode. One potential problem is that whileDruid can generally redraw the

display in labeled knot-diagram mode quickly, rendering can take a significant amount

of time. Thus, when performing continuous changes on a complex drawing in rendering

mode, the user’s experience can be unsatisfactory. Even very small mouse change can

causeDruid to perform time-consuming rendering computations before updating the dis-

play and returning control to the user. Consequently, the most efficient way to useDruid is

to do as much editing as possible in labeled knot-diagram mode and to not perform contin-

uous manipulations in rendering mode. This point applies mainly to continuous changes.

Discontinuous changes (e.g., crossing-flips) perform reasonably well in rendering mode.

6.4 Minimum Acceptable Mouse Distance

Although delayed response isolates the most egregious tasks from continuous interactivity,

knot-diagram tasks often cannot update fast enough for large mouse motions when the

drawing is complex. If the user attempts to translate a spline control point or an entire B-

spline a long distance very quickly, then the mouse positions that are reported by adjacent

mouse interrupts might be far apart becauseDruid spent the intervening time performing

knot-diagram tasks. WhenDruid must project crossings for a single large step, there is

a reasonably high risk that it could make a mistake and lose track of the crossings. Such

an error can be disastrous. If the crossings are lost, the drawing is effectively ruined

65

Chapter 6. Editing 21/2D Scenes

and cannot be recovered. More seriously, this error can be difficult to detect,i.e., Druid

might not even realize that it has incorrectly projected crossings to their new locations.

Therefore, crossing-projection errors are one of the most detrimental errors that can occur.

To minimize the risk of this kind of error, we use a technique calledminimum acceptable

mouse distanceas a buffer between the user’s induced mouse movements and the mouse

movements thatDruid’s mouse handling routines receive.

When a new mouse interrupt is delivered toDruid, it calculates the mouse distance

with respect to the previous mouse interrupt. If the delta is within theminimum acceptable

mouse distance, thenDruid acts on the new mouse location directly. However, if the

mouse distance exceeds the minimum acceptable mouse distance, thenDruid creates a

dummy mouse location that is projected from the previous mouse location toward the

current mouse location by a distance of the minimum acceptable mouse distance.Druid

then proceeds to act on the dummy mouse location (Fig. 6.3).Druid keeps track of

whether such aminimum delta exceeded eventhas occurred. If so, then immediately after

completing a series of knot-diagram tasks,Druid attempts to perform all knot-diagram

tasks again, but it uses the most recent dummy mouse location as the location from which

to project toward the current mouse location. In this way, the user can move the mouse

quickly across the display without the risk of incurring errors in crossing-projection and

Druid will catch up as quickly as possible. WhileDruid is continuously updating dummy

mouse motions, we say it is in acatch up phase. During a catch up phase the user sees

the control point he is altering (and by extension the shape of the spline being altered)

smoothly moving across the display until it catches up with the mouse’s current location.

If he is translating an entire boundary, then during the catchup phase he sees the entire

boundary moving steadily across the display toward the current mouse location.

If the user performs new mouse motions before a catch up phase is completed,Druid

simply starts using the most recent actual mouse position as the point toward which to

project dummy mouse locations (Fig. 6.3,b, d, ande). Thus,Druid will follow the mouse

66

Chapter 6. Editing 21/2D Scenes

around the display at a pace which minimizes the risk of errors.

0

1

2

3

4

a

b

c
d

e
f

Minimum acceptable mouse delta

Sequential dummy mouse locations (letters)

Sequential actual mouse locations (numbers)

After processing dummy
loc a, actual loc remains 1.

After processing dummy
loc c, actual loc remains 2.

After processing dummy
loc f, actual loc remains 4.

After processing dummy loc
b, actual loc has become 2.

After processing dummy loc f, actual loc 4 is within
the min acceptable delta. The catch up phase is
complete. Actual loc 4 is processed directly.

Actual loc starts at 0, and moves to
1. First dummy loc is created at a.

After processing dummy loc
d, actual loc has become 3.

After processing dummy loc
e, actual loc has become 4.

Dummy mouse projections

Projection rays used to calculate dummy mouse locations

Figure 6.3: An example of howDruid uses dummy mouse locations as a buffer between actual
mouse locations and its mouse handling routines. When the mouse moves too far in a single
interrupt,e.g., between actual mouse locations0 and1, Druid enters acatch up phasein which
it projects toward the mouse’s actual location in a series of jumps of acceptable distance, creating
dummy mouse locations along the way whichDruid’s mouse handling routines use. The catch up
phase ends when the actual mouse location is within the minimum acceptable mouse distance of
the most recent dummy mouse location. This happens betweenf and4.

67

Chapter 7

Finding a Legal Labeling

When the user performs an interaction that results in a topological change,Druid must

assign a new legal labeling to the figure. In Section 5.1 we described the search space

that Druid must search through to find a legal labeling.Druid must search through this

space for a minimum-difference legal labeling as quickly as possible, so as to produce

the most pleasant user experience possible. In this chapter we describe how this search is

performed in the case of acrossing-flipuser-interaction,i.e., the user clicks on a crossing to

flip its crossing-state, and in doing so, inverts the depth order of the two surfaces associated

with that crossing. Later, we describe the heuristics thatDruid employs in an attempt to

complete the search in a reasonable time. Finally, we present experimental results which

demonstrate the effectiveness of each of these heuristics and results which demonstrate the

performance of the search relative to a drawing’s complexity.

7.1 Crossing-Flip User Interaction

When the user clicks on a crossing to flip its crossing-state, he is imposing a constraint

on the drawing that is inconsistent with the current labeling.Druid then attempts to find a

68

Chapter 7. Finding a Legal Labeling

legal labeling that satisfies the user’s constraint. This will often require changing other el-

ements of the labeling, such as the crossing-states of other crossings or the depths assigned

to various boundary segments. Thus, the search solves aconstraint-satisfactionproblem

initiated by the change in crossing-state that the user specified.

7.2 Overview of the Search

The following is a list of the major data structures and variables that the search process

requires:

• A list of touched boundaries. Touched boundaries are boundaries that are crossed

while traversing other boundaries.

• The depth ranges for all boundary segments.

• Thestart segment for each boundary (an arbitrary segment of each boundary, from

which enumeration begins).

• The best solution (so far). This solution will be revised throughout the search as

better solutions are found.

The search takes the form of aconstraint-propagationprocess, similar to Waltz filtering

(see Waltz [43]). Waltz’s research illustrates how certain highly combinatorially complex

systems can be reduced in complexity to uniquely determined solutions through a process

called constraint-propagation. This term refers to the exploitation of local constraints on

adjacent vertices in a graph. Thus, the assignment of a label to one vertex of a graph

constrains adjacent vertices, which in turn propagate their own constraints deeper into the

graph. By means of this process, it is often the case that a seemingly ambiguous system

can be reduced to a single consistent labeling.

69

Chapter 7. Finding a Legal Labeling

7.3 Boundary Traversal During the Search

ThroughoutDruid’s search process, constraints are instantiated incrementally as the search

process explores the labeling throughboundary traversal, described below. As constraints

propagate, each constraint imposes additional constraints on elements of the labeling.

Thus, constraints propagate through the graph, vastly reducing the size of the combina-

torial search space. We will illustrate the specific nature of the constraint-propagation

later.

The search is performed by a set ofboundary traversals. A boundary traversal begins

at an arbitrary location on a boundary with a predetermined depth and visits each segment

on the boundary, until it returns to the starting location. As a boundary is traversed, the

traversal depth is altered where and in the way which is appropriate. Where the traversal

goes under an intersecting boundary, the depth is incremented by one. Where it comes out

from under an intersecting boundary, the depth is decremented by one. The purpose of

performing a boundary traversal is to test thezero integration rulefor the traversal. This

rule states that a complete traversal must change depth by a net sum of zero,i.e., for every

step a boundary goes down (as a result of going under a surface at a crossing) the traversal

must come back up again before the traversal is complete. This rule guarantees that a

traversal ends at the same depth that it started at, which in turn is a requirement of a legal

labeling.

The decision about which boundaries are traversed during the search is managed using

the touched boundary list, a list of boundaries that have been crossed during the traversal

of other boundaries. Since traversals visit every segment of a boundary, it is guaranteed

that all boundaries that intersect a traversed boundary will be visited. As boundaries are

touched, the new boundary is appended to the end of the touched boundary list. The

touched boundary list is initially seeded with all boundaries that are illegal,i.e., all bound-

aries that have at least one illegal crossing. In the case of a crossing-flip, the flipped

70

Chapter 7. Finding a Legal Labeling

crossing will initially always be illegal. Therefore, the touched boundary list is seeded

with the two boundaries that intersect at the flipped crossing. When all boundaries on

the touched boundary list have been legally traversed (a legal traversal satisfies the zero

integration rule) a leaf in the search tree has been reached. This corresponds to a potential

solution.

Note that once a boundary traversal has begun, the depth changes that occur during the

traversal are uniquely determined. There are only three situations which can occur when a

traversal reaches a crossing:

• If the boundary being traversed is on top at the crossing, the depth is not changed.

• If the boundary being traversed goes under at the crossing, the depth increases by

one.

• If the boundary being traversed comes up at the crossing, the depth decreases by

one.

Thus, the depths around the boundary are determined uniquely during a traversal, as the

constraint propagates. In the absence of constraint, the full combinatorics of possible

segment depth assignments for a particular boundary is the cumulative product of the depth

ranges for all the segments for that boundary, which can be a very large number. However,

when propagating constraints around a boundary incrementally, using the crossings as

constraints on the depths of adjacent segments, the number of possible segment depth

assignments is no longer combinatoric at all; there is, in fact, only one possible segment-

depth assignment for the entire boundary. This vast reduction in the complexity of labeling

a particular boundary is a crucial aspect of the search algorithm because it would take a

prohibitive amount of time to search the full space of labelings.

While the differences in depth around a boundary are uniquely determined, the depth

of the initial segment of the traversal is constrained, but not uniquely. The depth of the

initial segment must be within the depth range for the initial segment, as shown in Fig. 5.4,

71

Chapter 7. Finding a Legal Labeling

but since any depth in the range might be the depth of the optimum solution, all depths

in the depth range of the initial segment must be tested. Testing every depth in the depth

range is accomplished by wrapping each boundary traversal within a loop that restarts the

traversal with each of the possible depths for the initial segment.

At this point, we have described how a single boundary traversal is effected, and we

have specified that the goal of a boundary traversal is to test the boundary with the zero

integration rule. A failure of this test excludes the labeling that produces the illegal traver-

sal from the set of potential solutions. We have described how the touched boundary

list is initialized with all boundaries that are illegal at the beginning of a search and how

the touched boundary list grows during the search as a result of a traversal visiting other

boundaries at crossings. Finally, we have described how each single boundary’s traver-

sal is repeated multiple times, once for each of the possible depths of the initial segment.

Next we will describe how the boundary traversal process is wrapped into a larger tree-

search which performs multiple boundary traversals during the course of the search for a

minimum-difference labeling.

7.4 Structuring the Search

The search for a minimum-difference labeling is a depth first search. There are two kinds

of branch points in the search tree. The first kind was described at the end of Section 7.3;

each of the possible depths for the initial segment of a traversal is the root of a distinct

subtree which must be searched. The other branch point occurs when a boundary traversal

arrives at a crossing. Each of the two crossing-states is the root of a distinct subtree. One

subtree maintains the existing crossing-state, the other flips the crossing-state.

The following is a description of the entire backtracking search process. An empty

touched boundary list is created. This list is initially seeded with all illegal boundaries,i.e.,

72

Chapter 7. Finding a Legal Labeling

the two boundaries associated with the crossing that the user flipped. The next boundary

to be traversed is then chosen from the front of the touched boundary list. This boundary

is then traversed repeatedly within a loop which enumerates each of the possible depths

for the initial segment of that boundary.

As the traversal visits each crossing of the traversed boundary, the crossed boundaries

are appended to the touched boundary list. When the traversal is completed, if the traversal

satisfies the zero integration rule, the next boundary on the touched boundary list is chosen

and the traversal process continues with the next boundary on the touched boundary list.

If the traversal ends illegally the traversal backtracks to the last unflipped crossing in the

traversal, flips that crossing, and continues traversing forward. Thus, all combinations

of crossing-states for a boundary’s crossings will be enumerated during the course of the

search process.

If a traversal ends legally and there are no more boundaries on the touched boundary

list, the search has reached a leaf, or a potential search solution,i.e., a legally labeled

figure. The solution is assigned a score based on its difference from the labeling that

preceded the search and then the search continues by backtracking along the traversal in

reverse, exploring other subtrees.

Each time a traversal enumerates all combinations of crossing-states for all crossings

on the boundary, a single traversal is completed and the depth range iteration for that

traversal continues to the next depth in the depth range. When the entire depth range has

been enumerated, the next boundary on the touched boundary list is selected. When the

entire tree has been fully explored, the search is completed. Of all the legal labelings, the

one with the lowest difference relative to the labeling prior to the search is accepted. The

new labeling is then displayed and the user can initiate a new interaction.

The accumulation of differences between labelings that the backtracking search pro-

cess discovers and the prior labeling occurs in only two ways:

73

Chapter 7. Finding a Legal Labeling

• When a crossing is flipped, the difference is incremented by one.

• When a segment depth does not match its original depth, the difference is incre-

mented by one.

There are other potentialdifference scoring functionsthat could be employed. For ex-

ample, the numerical difference between a segment depth and its original depth could be

used, so that the accumulated difference for a particular segment might be greater than one.

However, experiments have suggested that an alternate scoring function is unnecessary.

7.4.1 Branch-and-Bound

The goal of the search is to find a minimum-difference labeling with respect to the labeling

that existed prior to the interaction. The difference between a candidate labeling found

during the search and the prior labeling is accumulated, oneδ at a time, during the search

process as the boundary-traversal algorithm branches; either preserving features of the

labeling (δ = 0) or altering them (δ = 1). The sum of allδ ’s between two labelings is

termedL∆. Branching occurs when the boundary traversal arrives at crossings and as the

starting depths of a traversal are enumerated. Notice that the accumulatedδ can never

decrease and that it is possible to exploit this fact during the search to improve the search

performance by bounding the search.

If there were some way of knowing that the accumulatedδ at any given point in the

process had surpassed theL∆ of the optimum solution, then there would be no need to

continue exploring the subtree beneath that point in the search tree for potential labelings.

At the outset of the search, there is no way to exploit such knowledge because we

cannot know in advance theL∆ of the actual minimum-difference labeling. However, as

the search proceeds, candidate labelings will be found. They might not be the optimum,

but theirL∆ will be known, and although we cannot stop the search at the first legal labeling

74

Chapter 7. Finding a Legal Labeling

found because there is no way of knowing if it is the optimum, we can use itsL∆ as a bound

on the subsequent search.

This process allows us to steadily increase the efficiency of the search as the search

progresses. The search begins with an infinite bound. When a solution is found, the bound

is tightened to that solution’sL∆ and the remaining search becomes more efficient as a

result. Later, if a solution with an even lowerL∆ is found, the bound is tightened further,

making the remaining search even more efficient. This process can quickly prune enor-

mous parts of the search space from consideration, thereby vastly increasing the efficiency

of the search.

7.5 Improving the Search

Because of the large size of the search space, searching for the minimum-difference la-

beling might take a considerable amount of time. In the worst case the entire space might

need to be explored. Therefore, we employ a number of heuristics in an effort to find

the minimum-difference labeling quickly enough to provide the user with a reasonable

turnaround time. For the most part, these heuristics are not independent of one another,

but work in tandem, each heuristic increasing the effectiveness of the others. The three

heuristicsDruid uses are:

• Choosing good boundary traversal starting segments

• Ordering the search to produce tight search bounds based on minimum-difference

earlier rather than later

• Terminating the search process after a maximum permitted search time has tran-

spired.

We discuss each of these heuristics in the next sections.

75

Chapter 7. Finding a Legal Labeling

7.5.1 Choosing Good Boundary Traversal Starting Segments

Each time an untraversed boundary is selected from the touched-boundary list, that bound-

ary is traversed within a loop over the possible starting depths for the segment where the

traversal began. Naively, we might choose the starting segment arbitrarily,e.g., by simply

choosing the first segment in the segment list. However, since there is no way to know

in advance which starting segment depth will yield the minimum-difference labeling, we

have no choice but to enumerate all the possible depths for the starting segment. This

enumeration increases the search time. If we choose a starting segment wisely, the search

time can be greatly decreased.

Fig. 5.4 illustrates how we can choose a starting segment wisely. When a traversal

starting location must be chosen, it is highly advantageous to choose a segment on the

boundary with the minimum depth range for the entire boundary as the starting segment.

This method for choosing a traversal starting segment can be easily accomplished if the

depth ranges for all segments have been calculated in advance.

Experiments with this feature enabled and disabled have demonstrated significant gains

in performance. Additionally, the benefit of this method appears to rise with the complex-

ity of the drawing. Therefore, this feature is absolutely crucial when editing large complex

drawings. In Section 7.6.1 we show experimental results that demonstrate the gains this

heuristic can provide.

7.5.2 Ordering the Search

Bounding the search works best if we can find a good solution,e.g., a solution with a tight

bound, early in the search. By guessing that certain labelings have a better chance of being

the optimum, we can order the search so that those labelings are explored first.

There are a number of criteria we can use to judge whether or not a potential labeling

76

Chapter 7. Finding a Legal Labeling

is a good candidate for early expansion. The purpose for formulating the problem as a

search for the minimum-difference labeling is, as stated in Section 5.1, to allowDruid to

anticipate the user’s intentions. We assume that the user wants the minimum necessary

change to occur. Similarly, we assume that the user expects most changes to occur within

a relatively small region surrounding the location of the user specified constraint. This

region is termed thearea of interest.

If we order the search so that regions of the search space within the area of interest are

explored first, then we can effectively enumerate all possible labelings which differ from

the prior labeling only within the area of interest before considering any labelings which

differ from the prior labeling outside of this area. Ordering the search in this manner has

two benefits. First, it most likely reflects the user’s intent. Second, the number of potential

changes in a compact area is significantly smaller than the number of potential changes in

the entire drawing, so we will find any solutions where changes are restricted to that area

much more rapidly than we would find solutions where changes are restricted to the larger

area.

One way to order the search so as to explore changes within the area of interest before

changes outside it is to perform a breadth first search of the potential labelings. This would

be feasible if the topology of the search tree is structured such that graph distances with

respect to the user’s area of interest in the knot-diagram correspond to depths in the search

tree. In such a tree, exploring high levels of the tree before exploring low levels of the

tree would cause labeling changes within the area of interest to be explored first. As it

happens, the search tree is already organized in exactly this fashion. To appreciate this,

one should keep in mind the distinction between the search space, which is a connected

graph of labelings in which edges correspond to pairs of labelings differing by exactly

one (Fig. 5.3), and the search tree, which represents the labelings the search algorithm

explores. Since upper levels of the search tree contain labelings with a lowL∆, they are

within a bounded neighborhood of the area of interest.

77

Chapter 7. Finding a Legal Labeling

Notice that although breadth first search has advantages, the algorithm described in

Section 7.4 is a depth first search because subtrees are expanded regardless of the cross-

ings’ distances from the area of interest. Ordering the search so that crossings inside the

area of interest are expanded before crossings outside the area of interest would be a better

approach, and could be implemented using breadth first search.

Unfortunately, implementation of breadth first search requires a queue of partially la-

beled knot-diagrams,i.e., the internal vertices of the search tree correspond to partial la-

belings, in which some aspects of the labeling are resolved and others are illegal or un-

resolved. Maintaining numerous partial labelings during the search would be costly, in

terms of both storage and time. Thus, the overhead required to implement a breadth first

search might be so costly that any benefits derived from using it would be negligible. In

the worst case, the overhead required could incur a net cost instead of a net benefit.

Instead of using breadth first search, we can achieve many of the same advantages of

breadth first search by executing a depth first search within aniterative deepeningloop,

which is commonly used in game tree search algorithms (see Marsland and Campbell

[26]). We do this by calculating, in advance, the graph distance between every crossing

in the knot-diagram and the crossing in the center of the user’s area of interest. We then

perform the depth first search described above in a loop where the search horizon increases

by one after every iteration. As a boundary is traversed to test the zero integration rule, the

traversal will potentially wander outside the area of interest. Without iterative deepening,

all branches in the search tree would be expanded in the order they are encountered during

a traversal. However, when wrapped within an iterative deepening loop with an increasing

horizon, no crossings beyond the current horizon will be expanded. For example, in the

first iteration of the loop, only the immediate neighbors of the crossing the user flipped are

expanded. As a result, the traversal of a boundary in the initial loop will take linear time

with respect to the number of crossings along a boundary.

It should be noted that of the two kinds of branch points mentioned above (crossing-

78

Chapter 7. Finding a Legal Labeling

states and boundary traversal starting depths), iterative deepening only constrains one.

While Druid uses iterative deepening to constrain crossing-state branch points to cross-

ings that lie within the iterative deepening horizon, it always selects traversal starting seg-

ments by choosing the segment of a boundary with the minimum depth range of all the

segments on that boundary regardless of whether the chosen boundary segment lies within

the iterative deepening horizon. Despite this inconsistency, applying iterative deepening

to crossing-state branch points has demonstrated significant performance gains.

Not only does iterative deepening expand subtrees corresponding to crossings within

the area of interest first and which are therefore more likely related to the user’s goal, but it

also finds labelings with smallL∆’s which provide stronger bounds early, which increases

the effectiveness of the branch and bound search. Since there are only a small number of

crossings within the area of interest, any solution that is found within that area will have a

smallL∆. Finding strong bounds early pays off heavily in terms of search efficiency.

7.5.3 Terminating the Search Process by Employing a Timeout

Even with all of the heuristics described so far, there exist drawings which are too complex

to label efficiently. In such cases, the optimal solution is often successfully found early

in the search, but does not provide a tight enough bound to truncate enough of the search

space to guarantee that the search finishes quickly. This scenario is particularly unfortunate

in light of the fact that the optimal solution has in fact been found early in the search

process. Thus, the time spent finishing the search is effectively wasted (although there is

no way of knowing thisa priori).

Our solution is to employ two possible timeouts:

1. A very brief timeout if a solution has already been found during the search process

2. A longer timeout if no solution has been found yet during the search process.

79

Chapter 7. Finding a Legal Labeling

Our values for these two timeouts have been 0.1s for the first timeout and 5.0s for the

second timeout. We chose these values to satisfy the two design goals of providing fast

response time if a solution is available and providing reasonable response time even if no

solution is available. If a search has found a solution, the earlier timeout will be used, thus

providing a faster response to the user. However, if no solution has been found, the search

will continue up to the second timeout, thus raising the likelihood that a solution will be

found before the search times out andDruid gives up. If no solution is found after the

second timeout,Druid abandons the search and fails to return a solution to the user.

Note that the use of timeouts often means that it is not guaranteed thatDruid will find

the optimal solution (or any solution at all). However, in our experience, this almost never

occurs. Iterative deepening is highly effective as a means for finding the correct solution,

i.e., the true minimum-difference solution, early in the search process.

The discussion so far has focused on thecrossing-flipuser-interaction, in which a user

intentionally alters the depth ordering of overlapping areas of two surfaces. There are

more complex interactions as well, as described in Section 6.2.2. These interactions are

often more complex than flips because they can invalidate significant portions of the knot-

diagram. Without going into the detail of how such situations are handled, it suffices to

say that the search for a minimum-difference legal labeling in such situations is basically

similar to the method described above. The management of the knot-diagram and the

calculation of the knot-diagramL∆’s is more complex, but the basic approach is the same.

7.6 Performance Improvement of Each Heuristic

This section presents experimental results of the benefits that can be achieved by employ-

ing the first two heuristics listed in Section 7.5,i.e., choosing good boundary traversal

starting segments and iterative deepening.

80

Chapter 7. Finding a Legal Labeling

7.6.1 Choosing Good Boundary Traversal Starting Segments

In Section 7.5.1 we described a heuristic which consists of choosing a good boundary

traversal starting segment. This heuristic calculates the maximum possible depth of all

boundary segments in advance. When a boundary is traversed, the boundary segment

of that boundary with the shallowest maximum possible depth is used as the boundary

traversal starting segment. This heuristic minimizes the number of traversals which must

be attempted for the boundary.

Since the naive method is arbitrary, it could choose a good starting segment or a bad

starting segment as the traversal starting segment. Consequently, it is difficult to precisely

measureDruid’s performance when using the naive method. Instead, we have performed

tests that compare the best and worst cases. In the best case,Druid chooses the boundary

segment with the shallowest possible depth as the starting segment. This method corre-

sponds to having this particular heuristic enabled. In the worst case,Druid deliberately

chooses the boundary segment with the deepest possible depth as the starting segment.

Since the naive method might choose the segment with the deepest possible depth, the

worst case represents an upper bound on the naive method’s running time.

Fig. 7.1 shows the drawing on which the running time tests for this heuristic were

performed. This drawing is somewhat contrived to demonstrate the effect of the tradeoff

between the best and worst cases. It is constructed so as to maximize the range of possible

depths for the boundary segments of the cigar shaped surface. At the ends, the cigar has a

depth range of one,i.e., it can only assume one depth, zero, which is the depth range that

will be enumerated for the cigar boundary whenDruid employs the best case method. At

the center, the cigar has a depth range of seven since the cigar overlaps seven disks, which

is the depth range that will be enumerated for the cigar whenDruid employs the worst cast

method. Likewise, for the outermost disk, whose crossings with the cigar are marked in

the right figure, the depth range in the best case is one and in the worst case is two.

81

Chapter 7. Finding a Legal Labeling

Figure 7.1: A drawing before (left) and after (right) a crossing-flip. The crossings corresponding
to the flip are marked with circles in the right figure.

Figs. 7.2 and 7.3 show plots of the running time and number of nodes visited for the

worst case (left) and best case (right) scenarios. We observe that the mean running time

for the best case scenario is five times faster than the mean running time for the worst

case scenario and the number of nodes visited for the best case scenario is seven times

smaller than for the worst case scenarios. These differences represent the difference in

performance between the best and worst cases.

82

Chapter 7. Finding a Legal Labeling

Best Starting Segment Worst Starting Segment
Labeling Method

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Left - Min
Center - Mean
Right - Max

8.30

1.52

Figure 7.2: Running times for the best starting segment vs. worst starting segment applied to the
flip shown in Fig. 7.1. We observe that best case scenario provides an improvement over the worst
case scenario by a factor of five. Precise mean running times are given above the bar representing
mean running times.

83

Chapter 7. Finding a Legal Labeling

Best Starting Segment Worst Starting Segment
Labeling Method

0

5x104

1x105

1.5x105

2x105

2.5x105

3x105

No
de

s

Left - Min
Center - Mean
Right - Max

158201

23855

Figure 7.3: Search nodes visited for the best starting segment vs. worst starting segment applied to
the flip shown in Fig. 7.1. We observe that the best case scenario provides an improvement over
the worst case scenario by a factor of seven. Precise mean search nodes visited are given above the
bar representing mean search nodes visited.

84

Chapter 7. Finding a Legal Labeling

7.6.2 Ordering the Search

Bounding the search works best if we can find a good solution,e.g., a solution with a tight

bound, early in the search. By guessing that certain labelings have a better chance of being

the optimum, we can order the search so that those labelings are explored first.

As discussed in Section 7.5.2, we explore thearea of interestsurrounding the user’s

induced change first. This ordering of the search is accomplished by projecting the knot-

diagram onto a planar graph and calculating the graph distance from every crossing in the

drawing to any crossing within the area of interest. We then perform branch-and-bound

search within an iterative deepening loop such that only crossings within the iterative deep-

ening horizon are considered for expansion.

Fig. 7.4 shows the drawing we used to test the effectiveness of iterative deepening. In

some cases, different crossings will correspond totopologically identicalfeatures of the

drawing,i.e., different crossings can correspond to features that occur in multiple places

in a single drawing. In Fig. 7.4, the crossings are topologically identical since the figure

is highly symmetrical. Thus, the tests were performed on all crossings and the resulting

data was merged. The set of crossings corresponding to one crossing-flip has been marked

with circles.

Figs. 7.5 and 7.6 show plots of the running time and number of nodes visited with

iterative deepening disabled (left) and enabled (right). We observe that the mean running

time with iterative deepening is 170 times faster than without it and that the number of

search nodes visited with iterative deepening is thirty times smaller than without it. Note

that without iterative deepening,Druid failed to find a solution within the 120 second

timeout in six percent of the tests.

85

Chapter 7. Finding a Legal Labeling

Figure 7.4: The drawing we used to produce the plots shown in Figs. 7.5 and 7.6. Since all
crossing-flips aretopologically identical(see text), the tests were performed on all crossings and
then merged in the plot. The four crossings correspond to one crossing-flip are marked with circles.

86

Chapter 7. Finding a Legal Labeling

Iterative Deepening Disabled Iterative Deepening Enabled
Labeling Method

0

20

40

60

80

100

Ti
m

e
(s

)

Left - Min
Center - Mean
Right - Max

52.5

.305

Figure 7.5: Running times for iterative deepening disabled and enabled applied to the flips shown
in Fig. 7.4. We observe that the use of iterative deepening improves performance by a factor of
170. Precise mean running times are given above the bar representing mean running times.

87

Chapter 7. Finding a Legal Labeling

Iterative Deepening Disabled Iterative Deepening Enabled
Labeling Method

0

5x105

1x106

1.5x106

2x106

No
de

s

Left - Min
Center - Mean
Right - Max

121172
4522

Figure 7.6: Search nodes visited for iterative deepening disabled and enabled applied to the flips
shown in Fig. 7.4. We observe that the use of iterative deepening improves performance by a factor
of thirty. Precise mean search nodes visited are given above the bar representing mean search nodes
visited.

88

Chapter 7. Finding a Legal Labeling

7.7 Search Performance

Section 7.6 demonstrated the benefits that can be achieved using each heuristic. This sec-

tion presents experimental results that measure how the performance of the overall search

process scales with drawing complexity. It has been shown that similar scene labeling

problems, such as scenes of trihedral blocks considered by Huffman, are NP-complete (see

Huffman [20] and Kirousis and Papadimitriou [22]). However, scene labeling is one of the

few NP-complete problems for which a practical and fast algorithm (for typical scenes)

has been found. We refer to Waltz’s method of constraint-propagation (see Waltz [43]).

Although Waltz filtering requires exponential time in the worst case, it performs much

better in the average case. Likewise,Druid successfully labels its representation quickly

using a form of Waltz filtering. In the following experiments we attempt to character-

ize Druid’s labeling performance as a function of drawing complexity. We can measure

drawing complexity in two ways:

1. Total number of crossings

2. Maximum region depth.

The first measure of complexity, total number of crossings, is a measure of the complexity

of the underlying knot-diagram. The second measure of complexity, maximum region

depth, is analogous todepth complexity(see McReynolds and Blythe [27]), which is a

common metric for analyzing the complexity of rasterizing a three-dimensional polygonal

scenes during three-dimensional rendering.

We conducted two kinds of labeling search experiments:

1. Randomized labeling

2. Incremental labeling.

89

Chapter 7. Finding a Legal Labeling

Randomized labeling attempts to find a legal labeling for a particular drawing by starting

from an initialized drawing,i.e., one in which all crossing-states have been randomized

and all boundary segment depths have been set to zero. Incremental labeling is more

representative of the way in whichDruid is actually used. As a drawing is altered over

time, incremental labeling preserves the current labeling and uses the current labeling as

the starting location in the search for a new minimum-difference legal labeling.

We conducted both experiments on two different sets of drawings. Each set of draw-

ings is carefully designed such that its complexity can be incrementally and methodically

increased by adding one more surface to the drawing in a predetermined fashion. This

procedure gives us a progression of drawing complexities against which we can observe

the performance of the labeling search. Whenever a new surface is added to the drawing,

the drawing is labeled using both of the methods listed above,i.e., it is randomly labeled

by randomizing the labeling immediately after adding the surface, and it is incrementally

labeled using the current labeling as the starting location in the search space.

7.7.1 Labeling Search Experiment Test 1

Fig. 7.7 (a) shows a drawing of a single cigar-shaped surface. To obtain a progression

of drawings, we iteratively added new “cigars”, one by one (Fig. 7.7,b, c). We did this

nineteen times, which resulted in twenty different drawings (including the first drawing)

(Fig. 7.7,d).

At any step during the iterative addition of new surfaces, the drawing’s complexity can

be described using the two measures of complexity listed above, total number of crossings

and maximum region depth. For Test 1, the number of crossings is linear in the number of

surfaces since two crossings are added for each additional surface. Likewise, the maximum

region depth is constant since no more than two surfaces ever cover a region.

90

Chapter 7. Finding a Legal Labeling

Labeling Search Experiment Test 1 Results

Figs. 7.8, 7.9, and 7.10 show plots of the labeling search performance relative to the first

measure of complexity, the total number of crossings. We observe, based on the plots

shown in Figs. 7.8 and 7.9, that the randomized method produces a performance which

scales exponentially in the number of crossings. In contrast, based on the plot shown in

Fig. 7.10, we observe that the performance of the incremental method scales linearly in

the number of crossings. Note that these results do not describeDruid’s behavior on all

drawings. Rather, they serve to illustrateDruid’s performance on drawings with character-

istics similar to the drawings used in Test 1,i.e., in which the number of crossings is linear

in the number of surfaces. In the next experiment, we will show thatDruid’s performance

can be quite different for drawings of different degrees of complexity.

We described two methods for measuring the complexity of a drawing, number of

crossings and maximum region depth. However, since the maximum region depth is con-

stant for Test 1, we have not provided experimental results for that measure of complexity.

We do, however, provide such results in Test 2.

91

Chapter 7. Finding a Legal Labeling

(a) (b)

(c) (d)

Figure 7.7: For the first labeling search experiment, we constructed a drawing of a single cigar-
shaped surface (a). This drawing can be iteratively modified by adding identical cigars to the
drawing, thus smoothly increasing the drawing’s complexity (b, c). We performed this process
nineteen times, resulting in twenty total drawings (including the first drawing) (d).

92

Chapter 7. Finding a Legal Labeling

0 10 20 30
Number of Crossings

0

5

10

15

20

25

Ti
m

e
(s

)

Randomized
Incremental

Figure 7.8: Labeling search time vs. number of crossings. We observe that the randomized method
performs worse than linear in the number of crossings. Results for the incremental method are
difficult to interpret on this plot. Figs. 7.9 and 7.10 more precisely characterize the performance of
each labeling search method. Errors bars show 95% confidence interval.

93

Chapter 7. Finding a Legal Labeling

0 10 20 30
Number of Crossings

0.001

0.01

0.1

1

10

Ti
m

e
(s

)

Randomized
Incremental

Figure 7.9: Labeling search time vs. number of crossings with a logarithmic y-axis. We observe
that the randomized method performs exponentially in the number of crossings.

94

Chapter 7. Finding a Legal Labeling

5 10 15 20 25 30 35
Number of Crossings

0.005

0.01

0.015

0.02

Ti
m

e
(s

)

Incremental

Figure 7.10: Labeling search time vs. number of crossings, incremental method. We observe that
the incremental method performs linear in the number of crossings.

95

Chapter 7. Finding a Legal Labeling

7.7.2 Labeling Search Experiment Test 2

In Test 2, we performed the exact same sequence of modifications to a drawing,i.e., we

incrementally added a surface with a specially designed shape to the drawing in nineteen

steps. At each step, we performed the same two experiments that were performed in Test

1, i.e., randomized and incremental labeling. However, in Test 2, the shape that is used

produces a set of drawings that has different characteristics than those of the drawings used

in Test 1. Fig. 7.11 shows the drawings that were used for Test 2. In Test 1, the addition

of a new shape always produced two new crossings. In Test 2, the addition of a new shape

produces twomorecrossings than were produced in the previous step,i.e., the number of

crossings that is added at each step increases from step to step. Since the derivative of the

number of crossings relative to the number of surfaces is linear for Test 2, the number of

crossings is quadratic in the number of surfaces. Likewise, in Test 1 the maximum region

depth was constant, whereas in Test 2 the central region is covered by every surface in the

drawing. Thus, the maximum region depth is linear in the number of surfaces for Test 2.

Labeling Search Experiment Test 2 Results

Figs. 7.12, 7.13, and 7.14 show plots of the labeling search performance relative to the

number of crossings for Test 2. Note that only the first six data points of the randomized

method are relevant. Subsequent data points represent labeling searches which timed out

at 120 seconds without finding a solution. Consequently, the data beyond that point is

meaningless. We observe based on the plots shown in Figs. 7.12 and 7.13 that the per-

formance of the randomized method scales exponentially in the number of crossings. We

observe based on the plots shown in Fig. 7.13 (in which the incremental method performs

better than exponential) and Fig. 7.14 (in which the incremental method performs worse

than linear) indicate that the incremental method produces a performance which scales

polynomially in the number of crossings. Note that this result is different from Test 1,

96

Chapter 7. Finding a Legal Labeling

in which the performance of the incremental method performed linearly in the number

of crossings. We conclude that for drawings of sufficient complexity, the labeling search

performance can scale in a polynomial fashion, as shown.

97

Chapter 7. Finding a Legal Labeling

(a) (b)

(c) (d)

Figure 7.11: For the second labeling search experiment, we constructed the shape shown ina.
Identical copies of this shape were incrementally added to the drawing (b, c). We performed this
process nineteen times, resulting in twenty total drawings (including the first drawing) (d). In each
figure above, the crossings that were created as a result of the addition of the most recent surface
are marked with solid circles. Note that the number of crossings that are added for each surface is
linear in the number of surfaces currently in the drawing.

98

Chapter 7. Finding a Legal Labeling

0 100 200 300
Number of Crossings

0

20

40

60

80

100

120

Ti
m

e
(s

)

Randomized
Incremental

Figure 7.12: Labeling search time vs. number of crossings. Only the first six data points of
the randomized method are relevant. Subsequent data points represent labeling searches which
timed out at 120 seconds without finding a solution. Consequently, the data beyond that point is
meaningless. We observe that the randomized method performs worse than linear in the number
of crossings. Results for the incremental method are difficult to interpret on this plot. Figs. 7.13
and 7.14 more precisely characterize the performance of each labeling search method. Errors bars
show 95% confidence interval.

99

Chapter 7. Finding a Legal Labeling

0 100 200 300
Number of Crossings

0.001

0.01

0.1

1

10

100

Ti
m

e
(s

)

Randomized
Incremental

0 5 10 15 20 25 30 35
0.001

0.01
0.1

1
10

100

Figure 7.13: Labeling search time vs. number of crossings with a logarithmic y-axis. Only the first
six data points of the randomized method are relevant. Subsequent data points represent labeling
searches which timed out at 120 seconds without finding a solution. Consequently, the data beyond
that point is meaningless. The inset plot shows only the first six data points of the randomized
method, which more clearly illustrates that the plot of the randomized method is linear on a log plot.
Thus, we conclude that the randomized method performs exponentially in the number of crossings
and that the incremental method performs better than exponential in the number of crossings.

100

Chapter 7. Finding a Legal Labeling

0 100 200 300
Number of Crossings

0

0.5

1

1.5

2

Ti
m

e
(s

)

Figure 7.14: Labeling search time vs. number of crossings, incremental method. We observe
that the incremental method performs worse than linear in the number of crossings. Since the
incremental method performs better than exponential in the number of crossings (see Fig. 7.13),
we observe that the incremental method performs polynomially in the number of crossings.

101

Chapter 7. Finding a Legal Labeling

Figs. 7.15, 7.16, and 7.17 show plots of the labeling search performance relative to

the maximum region depth for Test 2. We observe based on the plots shown in Figs.

7.15 and 7.16 that the performance of the randomized method scales exponentially in the

maximum region depth. We observe based on the plots shown in Fig. 7.16 (in which

the incremental method performs better than exponential) and Fig. 7.17 (in which the

incremental method performs worse than linear) that the performance of the incremental

method scales polynomially in the maximum region depth.

5 10 15 20
Max Region Depth

0

20

40

60

80

100

120

Ti
m

e
(s

)

Randomized
Incremental

Figure 7.15: Labeling search time vs. maximum region depth. Only the first six data points of
the randomized method are relevant. Subsequent data points represent labeling searches which
timed out at 120 seconds without finding a solution. Consequently, the data beyond that point is
meaningless. We observe that the randomized method performs worse than linear in the maximum
region depth. The incremental method is difficult to analyze on this plot. Figs. 7.16 and 7.17
more precisely characterize the performance of each labeling search method. Errors bars show
95% confidence interval.

102

Chapter 7. Finding a Legal Labeling

5 10 15 20
Max Region Depth

0.001

0.01

0.1

1

10

100

Ti
m

e
(s

)

Randomized
Incremental

Figure 7.16: Labeling search time vs. maximum region depth with a logarithmic y-axis. Only
the first six data points of the randomized method are relevant. Subsequent data points represent
labeling searches which timed out at 120 seconds without finding a solution. Consequently, the
data beyond that point is meaningless. The inset plot shows only the first six data points of the
randomized method, which more clearly illustrates that the plot of the randomized method is linear
on a log plot. Thus, we observe that the randomized method performs exponentially in the max-
imum region depth. We observe that the incremental method performs better than exponential in
the maximum region depth.

103

Chapter 7. Finding a Legal Labeling

2 4 6 8 10 12 14 16 18 20
Max Region Depth

0

0.5

1

1.5

2

Ti
m

e
(s

)

Figure 7.17: Labeling search time vs. maximum region depth, incremental method. We observe
that the incremental method performs worse than linear in the maximum region depth. Since the
incremental method performs better than exponential in the maximum region depth (see Fig. 7.13),
we observe that the performance of the incremental method scales polynomially in the maximum
region depth.

104

Chapter 8

Boundary Grouping With Cuts

To this point in the dissertation, we have described the central aspects ofDruid’s function-

ality. In particular, we have described its representation,i.e., labeled knot-diagrams, the

search space thatDruid automatically searches through to find legal labelings when the

user causes topological changes, and the search process thatDruid uses to search through

the this space. The next two chapters are somewhat orthogonal to the main thesis are still

important. This chapter describescuts, whichDruid uses to group boundaries that bound

a single surface. The next chapter discussesrendering, the processDruid uses to translate

a labeled knot-diagram into an image with solid color fills for contiguous regions of the

canvas.

The fact that a surface can be bounded by multiple boundaries can cause two kinds of

problems forDruid. First,Druid must know which boundaries to translate as a unit when

the user drags a surface across the canvas. Second, in some drawings there is a potential

ambiguity as to which boundaries bound which surfaces. Consequently, it is possible that

Druid will not assign a labeling to a knot-diagram that conforms to the user’s intent. Both

of these problems arise from the fact thatDruid is not like other drawing programs in

that the basic unitsDruid operates on are not contours or regions but surfaces. Therefore,

105

Chapter 8. Boundary Grouping With Cuts

Druid must use asurface structureat a higher level of abstraction than boundaries. In this

chapter we describe howDruid automatically groups boundaries into surfaces by finding

cuts, i.e., paths joining two locations on two boundaries in a way that is analogous to a

scissor cut through a surface. We briefly discuss the concept of manual cuts,i.e., cuts that

the user explicitly designates, and then describe howDruid automatically improves the

cleannessof the cuts it has previously found for a drawing without degrading performance

and negatively impacting the user’s experience.

8.1 Two Kinds of Object Groups: Boundary Groups and

Surface Groups

One feature that is common to most drawing programs is the ability to group objects

together. Groups are usually used to perform transformations like translation, scaling,

and rotation on a set of objects. Users who are familiar with other drawing programs

might expect that the most obvious objects to group inDruid are individual boundaries

since these are closely analogous to objects in other drawing programs. However,Druid

is unlike conventional drawing programs in that the basic units that are operated on are

surfacesand boundaries are used to represent surfaces.

Druid handles these two fundamental objects, boundaries and surfaces, differently with

respect to grouping. With regard to surfaces,Druid only provides the notion of a temporary

selectionfor the purpose of performing transformations on a group. It does not provide a

more permanent form of surface grouping. Selection is a feature common to many kinds

of programs,e.g., drawing tools, text-editors, spreadsheets, and games. It is transient in

nature and only exists while the user performs an action on the selection. In general,

multiple simultaneous selections are not allowed, and selections are not stored as part of

any persistent representation. Selections of surfaces are the only form of explicit user

106

Chapter 8. Boundary Grouping With Cuts

initiated grouping thatDruid currently provides.

Druid automatically groups multiple boundaries into asurface structurewithout any

intervention from the user. Boundary groups are not required forDruid to legally label

a drawing. However, as in other drawing programs,Druid can use groups as a basis

for translation of a surface with multiple boundaries. More importantly,Druid can use

boundary groups to eliminate ambiguities about which surfaces boundaries bound. For

example, in Fig. 8.1 (left), it is ambiguous whether boundaryB bounds a surface below

boundaryA, above boundaryA, or the same surface as boundaryA. This ambiguity can

potentially cause problems. If the user were to create a third boundary that overlaps the

ambiguous surface ofA and B, Druid might arbitrarily place the new surfacebetween

boundariesA andB. Clearly, if the user’s intent is for boundariesA andB to bound the

same surface, then such a placement violates the user’s expectation about the effects of his

interactions. Grouping boundaries can minimize this type of problem.

8.2 Boundary Grouping with Cuts

Druid automatically finds and maintains boundary groups without any input from the user.

It does this by finding and maintainingcuts. A cut is analogous to a scissor cut through a

surface joining two boundaries that bound a single surface. A cut converts two boundaries

of a surface into a single contiguous boundary, as shown in Fig. 8.1 (center and right).

After a cut is discovered it is used to merge the two boundaries’ surfaces,i.e., a boundary

group. If a cut can be found between the two boundaries, as shown in Fig. 8.1, then the two

boundaries demonstrably bound the same surface and can be grouped for later operations

that require this particular ambiguity to be resolved.

Observe that the discovery of a cut between two boundaries effectively joins the two

boundaries into a single closed boundary. Cuts effectively reduce the number of bound-

107

Chapter 8. Boundary Grouping With Cuts

cut

A

B

Figure 8.1: Acut is analogous to a scissor cut through a surface joining two boundaries of that
surface. Cuts are used to group boundaries together for group transformations like translation,
scaling, and rotation. Cuts also reduce ambiguities regarding the correct labeling for the knot-
diagram.

aries in a drawing by one per cut. Consequently, they reduce the overall complexity of a

drawing, thereby reducing the size of the search space and making the search significantly

faster.

The inclusion of cuts in labeled knot-diagrams requires a more sophisticated labeling

scheme which includes four new crossing types. In addition to the original boundary-to-

boundary crossing type shown in Fig. 4.2, four new crossing types corresponding to all

possible crossings involving cuts must also be satisfied in legal labelings (Fig. 8.2). The

four new crossings types are:

• A boundary crosses a cut with the boundary above

• A boundary crosses a cut with the boundary below

• A cut crosses a cut

• A cut endsand attaches to a boundary,i.e., aT-junction.

108

Chapter 8. Boundary Grouping With Cuts

y ≥ x y + 1

x

x

y

x > y

x

y

x

x

x

x

y

x > y

y

A boundary crosses a cut
with the boundary above

A boundary crosses a cut
with the boundary below

A cut crosses a cut

A cut ends and attaches
to a boundary, i.e., a

T-junction

Figure 8.2: The inclusion of cuts in labeled knot-diagrams requires additional crossing types. In
addition to the boundary-to-boundary crossing type shown in Fig. 4.2, there are four new crossing
types involving cuts which can be present in a labeled knot-diagram. Each crossing type and its
constraints are illustrated with a double line denoting the cut to emphasize that a cut is an atomic
entity (left) and with a gap denoting the cut for increased clarity (right).

109

Chapter 8. Boundary Grouping With Cuts

8.3 Finding Legal Cuts

A cut is a straight line segment joining a location on one boundary to a location on another

boundary. Although a cut can theoretically join two locations on the same boundary (see

Sections 10.2.2 and 14.1) we confine this discussion to cuts joining pairs of boundaries.

A legal cut represents a physically plausible scissor-cut through a surface. Consequently,

a cut can only be legal if the two boundaries it joins bound the same surface. Cuts do not

have to be straight lines, butDruid restricts itself to straight line cuts because this simplifies

Druid’s implementation and is sufficient to achieve the goal described in Section 8.1,i.e.,

the grouping of boundaries bounding the same surface. (for a description of a situation

where curved cuts might be useful, see Section 14.1.).

A cut-chainis a sequence of alternating boundaries and cuts that joins two boundaries.

In Fig. 8.3 (a) one cut-chain joins boundaries4 and1 through boundary3 while a longer

cut-chain connects boundaries4 and2 through boundaries3 and1.

Boundaries can be classified according to their degree ofconnectedness:

• Unconnected: a boundary which is not joined by cuts or cut-chains to any other

boundary bounding the same surface

• Partially-connected: a boundary which is joined by cuts or cut-chains to some of

the other boundaries bounding the same surface

• Fully-connected: a boundary which is joined by cuts or cut-chains to every other

boundary bounding the same surface.

The primary goal of the cut search is to ensure that all surfaces are defined by a single

boundary component. This goal is accomplished byfully-connectingall boundaries.

It is important to note thatDruid can never determine a boundary’s connectedness.

All Druid can do is assume that boundaries are not fully-connected and then attempt to

find cuts for them. Likewise, after the cut search is completed,Druid assumes that all

110

Chapter 8. Boundary Grouping With Cuts

boundaries are fully-connected (although there is no way to verify their connectedness

in practice). It is possible, although unlikely, that some boundaries might not be fully-

connected following the cut search. We discuss this possibility later in Section 8.3.1 where

we discuss the risk of false negatives during the search process.

There are two types of surfaces:finiteandinfinite. A finite surface has at least one user-

defined exterior boundary which confines the surface to a finite area. An infinite surface

has no explicit exterior boundary, and consequently has an infinite area. Despite the fact

that the user has not constructed an exterior boundary in such a case, a boundary residing

at an infinite distance is implicit and any user-created boundary,e.g., a hole, belong to the

infinite surface can be joined to it via a cut. Fig. 8.3 illustrates finite and infinite surfaces.

(a) (b) (c)

1

2

3

4

Figure 8.3: Examples of finite and infinite surfaces with cuts as indicated. (a) and (b) show finite
surfaces. (c) shows two surfaces, one of which is infinite.

Since boundaries can be user-created or implicit, cuts can be classified into two corre-

sponding types. Afinite cutjoins two boundaries which the user has explicitly constructed

(Fig. 8.3,a andb). An infinite cut joins a user-created boundary to its implicit infinitely

distant exterior boundary. In theory, infinite cuts might extend in any direction. However,

for simplicity, Druid only considers horizontal infinite cuts extending to the left (Fig. 8.3,

c). The cut search must be capable of finding both finite and infinite cuts. When a cut is

found, the two associated boundaries’ surfaces are merged into a single surface. The next

111

Chapter 8. Boundary Grouping With Cuts

section describes howDruid finds cuts.

8.3.1 The Cut Search Process

The cut search is performed for each boundary more or less independently of the cut

search for other boundaries.1 Thus, we can simplify our discussion of the cut search by

describing how a cut search is performed for a single boundary. Performing the entire

search is subsequently a matter of performing a similar search for all boundaries.

The following terms will aid our exposition of the processing of searching for cuts:

• Primary boundary: a boundary for which a cut search is performed

• Test boundary: a boundary which the cut search process attempts to join to the

primary boundary with a cut

• Potential cut: a straight line joining an arbitrary location on the primary boundary

to an arbitrary location on the test boundary (may be finite or infinite).

There are two steps in finding a cut. Step 1 searches a cache of previously discovered cuts

(which we callcached cuts) in the hope of finding a cut involving the primary boundary.

Reusing a cached cut is beneficial for two reasons. The first reason is that it obviates the

need to search for a new cut, which is more time consuming than using a cached cut.

The second reason is that the search for a new cut might suffer fromfalse negatives. A

false negative occurs whenDruid fails to find a cut between two boundaries despite those

boundaries being theoretically possible to join via a cut,i.e., cuttable. When there is no

legal cached cut for the primary boundaryDruid proceeds to Step 2 which performs a

randomized search for a new legal cut. We describe both steps next.

1The only way that cut searches can affect one another is if cut searches which occur earlier in
the search process produce partially-connected boundaries which can then be used for cut-chains
later in the search process.

112

Chapter 8. Boundary Grouping With Cuts

8.3.2 Cached Cuts

Step 1 in finding a cut for a boundary is to determine whether there are any cached cuts

for the boundary. WheneverDruid successfully finds a cut joining two boundaries during

the randomized search in Step 2, the locations of the cut’s attachment points on the two

boundaries are cached. During Step 1,Druid tests any cached cuts associated with the

boundary. In most cases, a cached cut will still be legal and thus will help the search

terminate quickly by avoiding Step 2. Reconstructing a cut from a cached cut is much

faster than randomly searching for a new cut. Additionally, a legal cached cut eliminates

the risk of false negatives, which can only occur during Step 2. However, a cached cut

is not guaranteed to be legal since changes to the drawing may have invalidated it. If a

cached cut is no longer legal,Druid erases it.

It is possible for a boundary to have multiple cached cuts sinceDruid generates a

cached cut for every cut currently in the drawing. Consider a boundary which is in the

middle of a cut-chain. Since such a boundary has at least two cuts it consequently has

at least two cached cuts. Thus,Druid must check every cached cut associated with the

boundary before proceeding to Step 2.

If no legal cached cuts exist for the primary boundary,Druid proceeds to Step 2, in

which random potential cuts are generated and tested. This randomized cut search process

is described in the next section.

8.3.3 Finding a Cut for One Boundary

Step 2 in finding a cut is to perform a randomized search for a new legal cut. Potential cuts

joining the primary boundary to various test boundaries are generated and then tested.

The cut search process is structured as three nested loops. The inner loop takes the

primary boundary and a test boundary and enumerates a number ofcut attemptsfor the

113

Chapter 8. Boundary Grouping With Cuts

boundary pair. A cut attempt generates a random potential cut between the two boundaries,

i.e., a straight line joining random locations on both of the boundaries, and then tests the

potential cut’s legality, a process which we describe in the next section.

The intermediate loop enumerates all boundaries, each of which is used as the test

boundary in the inner loop. Thus, the intermediate and inner loops test all boundary pairs

involving the primary boundary, searching for a legal cut between the primary boundary

and each test boundary. If at any point a legal cut is found, the search is immediately

terminated and the discovered cut is used to merge the two boundaries’ surfaces.

There is no definitive way to know how many cut attempts to make between two bound-

aries. If too few are made, the risk of false negatives will be too high andDruid might not

discover a legal cut for a pair of cuttable boundaries. However, if too many cut attempts

are made, the search process will take a long time. In particular,Druid will waste a lot of

time testing boundary pairs which are genuinely uncuttable,i.e., boundary pairs which do

not bound the same surface and consequently for which there is no legal cut to be found.

In such cases the search will not end until the full number of cut attempts has been enu-

merated. Ideally,Druid would not spend much time attempting cuts between boundary

pairs that are uncuttable, and yet it would find legal cuts quickly. We have designed the

search process to increase of likelihood of this outcome with the use of the outer loop,

which steadily increases the number of cut attempts in the inner loop.

Thus, on the first iteration of the outer loop,Druid makes very few cut attempts be-

tween the primary boundary and each test boundary.2 If no legal cut is found, the outer

loop repeats, and the number of cut attempts in the inner loop is increased. The entire

search process continues until either a legal cut is found or the outer loop reaches its max-

imum cut attempt scaling factor and the search ends without a successful cut discovery.

2During the first iteration of the outer loop,Druid makes1/32 of the number of cut attempts
it will make in the last iteration of the outer loop. For a pair of boundaries defined ninety-six
piecewise linear segments each, the first iteration of the out loop makes three cut attempts and the
last iteration makes ninety-six cut attempts.

114

Chapter 8. Boundary Grouping With Cuts

The following pseudo-code illustrates the structure of the search process. Lines 2, 3,

and 6 correspond to the three nested loops.

1. FIND LEGAL CUT(p) . p: the primary boundary

2. for M← 1/32 to 1.0stepM← M · 2 . M increases exponentially

3. for eachb∈ B . B: the set of all boundaries

4. if b 6= p . if b is a valid test boundary

5. m← sqrt(p’s segs· b’s segs)·M . segs: the number of piecewise

. linear segments forming a boundary

6. for i ← 1 to m . loop over cut attempts

7. c← GENERATE RANDOM CUT(p, b)

8. if TEST CUT(c)

9. return c . c is legal

10. return NULL . no legal cut was found forp

We have not provided pseudo-code for the methods GENERATE RANDOM CUT() or

TEST CUT(). GENERATE RANDOM CUT() chooses a random piecewise linear segment

on each of the two boundaries and uses the midpoint of each segment to form an endpoint

of the potential cut. Alternatively, GENERATE RANDOM CUT() can also generate an in-

finite cut, i.e., a cut from a location on the primary boundary to a location on an infinite

boundary. Since it doesn’t matter where the cut attaches to the infinite boundary,Druid

simply chooses a location that makes the infinite cut horizontal. TEST CUT(), which tests

a cut’s legality, is discussed in the next section.

8.3.4 Testing a Cut

A randomly generated potential cut must be tested for legality and it must satisfy a number

of criteria in order to be legal. Because a cut is analogous to a scissor cut through an

115

Chapter 8. Boundary Grouping With Cuts

idealized physical surface, we can impose constraints on cuts that would be true of actual

scissor cuts. One constraint is that both ends of the cut must attach to the interior (bounded)

sides of the boundaries with respect to their signs of occlusion,i.e., the cut must traverse

through the bounded surface, not through empty space. Likewise, along a cut’s full length,

the cut can never exit and then reenter the surface because this would similarly correspond

to cutting through empty space.

Thestart locationof a cut is the attachment point of the cut to the primary boundary

while theend locationis the attachment point to the test boundary.Cut weavingis the

process of assigning a depth at the start of a cut that matches the primary boundary’s

depth at the start location and then traversing the cut, assigning appropriate depth changes

at each crossing as the traversal goes under and comes out from under surfaces. Cut

weaving is similar to boundary traversal which is used during the labeling search described

in Section 7.3. The crucial behavior associated with cut weaving,i.e., the adjustment of

the cut’s depth as a traversal visits its crossings, is shown in the pseudo-code function

UPDATE DEPTH() in Section 11.2.2. A further constraint on legal cuts states that after

weaving a cut, the cut’s depth at the end location must match the test boundary’s depth

at the same location. In other words, in order to be legal, a woven cut must have legal

crossings along its entire length, including the T-junctions at both ends (see Fig. 8.2).

However, since the process of weaving implicity renders all crossings legal except the T-

junction at the end location, the only crossing whose legality is in question after weaving

is the final T-junction.

Fig. 8.4 illustrates how cut weaving is used to determine if a potential cut is legal.

Both drawings show the same labeled knot-diagram. In the figure on the left, the cut is

legal because the final T-junction (crossinge) is legal. In the figure on the right, the cut is

illegal. Therefore boundaryQ bounds the same surface as boundaryM.

If a potential cut does not extend through empty space and weaves such that the attach-

ment point at the end location forms a legal T-junction, then it is legal. A legal cut implies

116

Chapter 8. Boundary Grouping With Cuts

0

1

0121
1 e

Q

a
c db

0

M
N

P
0

1

121
1

Q

a
c db

0

M
N

P

Figure 8.4: Using cut weaving to determine a potential cut’s legality. To test a potential cut’s
legality,Druid weavesthe cut. A depth is assigned at the start of the cut that matches the boundary’s
depth at the start location,e.g., 1 for boundaryQ in the drawings depicted above. The cut is then
traversed, similar to boundary traversal (see Section 7.3), with appropriate depth changes assigned
along the way. If the final T-junction (e, left andd, right) is a legal T-junction, then the cut is legal.
The left cut is legal and the right cut is illegal.

that the two joined boundaries bound the same surface. It is impossible for a potential cut

to be legal for two boundaries that do not bound the same surface.

8.4 Manual Cuts

Druid automatically finds cuts without any intervention from the user. However, in some

situations it is useful for the user tosuggesta cut. If a topological change invalidates an

existing cut,i.e., if the figure can no longer be legally labeled due to an impossible cut, that

cut is deleted. However, new cuts cannot be found until after the labeling search because

cut weaving relies on the boundary segment depths. Not having some cuts is generally

acceptable since any missing cuts will be found after the labeling search and will be of

great benefit during subsequent labeling searches and surface translations. However, a cut

that is suggestedprior to labeling can simplify the labeling search. A user suggests a cut

by clicking on two boundaries to define the cut’s endpoints.Druid then tests the potential

cut. Some illegal suggested cuts can be rejected, but a suggested cut’s legality cannot be

117

Chapter 8. Boundary Grouping With Cuts

definitively confirmed without the segment depths. Therefore, this method can suffer false

positives in which an illegal suggested cut is accepted as legal and this will preventDruid

from finding a legal labeling. In summary, although this approach has serious limitations,

the suggestion of a genuinely legal cut greatly aids the labeling search.

In the vast majority of cases a drawing can be constructed without any manual cuts and

Druid will find the necessary cuts on its own. In fact, most users do not necessarily have to

know that cuts are even part ofDruid’s representation. To emphasize this point, we often

illustrate labeled knot-diagrams without showing the cuts because they are an element of

the representation of which the user is generally unaware. However, if a greater emphasis

were placed on detecting false positives, then perhaps manual cuts would be a genuinely

useful feature ofDruid for the purpose of improving the labeling search performance on

complex drawings.

8.5 Improving Cuts

An optimalcut for a pair of boundariies is a cut with the minimum necessary number of

crossings. There are two opposing goals whenDruid attempts to find cuts. The first goal

is to find cuts as quickly as possible while the second goal is to find optimal cuts, which

necessarily takes longer because the first cut that is discovered may not be optimal. One

might assume that the method of search described in Section 8.3.3 could be modified to

reject legal cuts that are suboptimal. Thus, instead of terminating when thefirst cut is

found, the search would not end until an optimal cut is found. There are two problems

with such a search method however. The first problem is that there is currently no clear

way to know if a cut is optimal. The second problem is that the search would take longer

to run than the current method. We discuss these problems in detail next.

There is currently no known way to determine how many crossings an optimalstraight

118

Chapter 8. Boundary Grouping With Cuts

cut must have. There is, however, a relatively simple method for determining many cross-

ings an optimalcurvedcut must have. Fig. 8.5 illustrates examples of optimal straight and

curved cuts for some drawings. Given the shortest chain of adjacentregions(contiguous

areas of the canvas bounded by boundary segments) joining the two boundaries, the num-

ber of crossings an optimal curved cut must have is denoted by one less than the length of

the region chain. For example, in Fig. 8.5 (a andb) boundaries1 and2 bound the same

region, which corresponds to a region chain of length one. Therefore, those boundaries

can be joined by an optimal curved cut with zero crossings. If the two boundaries bound

two adjacent regions (a region chain of length two), as shown in Fig. 8.5 (c), those bound-

aries can be joined by an optimal curved cut with one crossing. However,Druid currently

only uses straight cuts and we currently know of no method for ascertaining where or not a

straight cut is optimal. IfDruid were extended to use curved cuts, then this method would

be useful for determining is a potential cut is optimal. From this point forward the term

optimal cut will refer to optimal straight cuts.

(a) (b) (c)

1

2

Figure 8.5: Examples of optimal cuts. In figurea an optimal straight cut has zero crossings. In
figureb an optimal curved cut has zero crossings but an optimal straight cut has two crossings. In
figurec an optimal curved cut has one crossing but an optimal straight cut has three crossings.

The only way to find an optimal cut is to perform an exhaustive search of all possible

cuts between a pair of boundaries. In theory, an exhaustive search would never terminate

since there are an infinite number of unique potential cuts that can join any two boundaries.

119

Chapter 8. Boundary Grouping With Cuts

However, in Section 8.3.3 we explained thatDruid only considers cuts with endpoints that

are located at the midpoint of a piecewise linear segment forming a boundary.3 Thus,

Druid can only consider a finite number of endpoints for a cut and consequently can only

consider a finite number of unique cuts. The number of unique cutsDruid can attempt

between two boundaries isS′ ·S′′, whereS′ is the number of piecewise linear boundary

segments on the primary boundary andS′′ is the number of piecewise linear boundary

segments on the test boundary.4 Consequently, the maximum number of cut attempts to

make in an exhaustive search isS′ ·S′′, although cuts will be generated randomly rather

than being systematically enumerated. This exhaustive search can be terminated early if a

cut with zero crossings is found (which is implicitly optimal), but in a situation where an

optimal cut has at least one crossing, early termination is not possible.

A second problem with finding optimal cuts is that a cut search method that continues

to find cuts after a successful cut has already been found will inherently take longer than

the simpler method that terminates after the first legal cut is found. In fact, since an

exhaustive search is required in order to find an optimal cut in a situation where an optimal

cut has at least one crossing, searching for optimal cuts may take an extremely long time.

It should be noted thatDruid does not have to find optimal cuts. Any legal cut suf-

fices for operations that rely on cuts. However, whileDruid might perform correctly with

suboptimal cuts, its performance will be degraded.Cleancuts (those with few crossings)

result in clean drawings. Two examples of operations for which the cleanness of a drawing

can affect performance are the labeling search (see Chapter 7) and rendering (see Chapter

9). The labeling search performs slower for a less clean drawing for multiple reasons. The

most serious problem is that additional crossings introduce additional crossing-state nodes

3Note that relying solely on the midpoints of piecewise segments means thatDruid is incapable
of finding an optimal cut in a situation where an optimal cut requires a cut endpoint that is not
located at a piecewise midpoint. This problem could easily be alleviated by permittingDruid to
consider cut endpoints at any location on a boundary. However, in practice, we have not found
such an increase in complexity necessary.

4Note thatS′ ·S′′ corresponds to line 5 from the pseudo-code in Section 8.3.3 withM = 1.0.

120

Chapter 8. Boundary Grouping With Cuts

into the tree search, thus significantly increasing the the search space size. Rendering re-

quires separate processing to determine a fill-color for each region of the canvas. Cuts

with numerous crossings produce drawings with numerous regions.

Since fast turnaround times are crucial, but clean cuts are preferred,Druid attempts

to improve cuts, but only in a way that minimizes its impact on the user’s experience.

During the cut search,Druid relies on the search method described in Section 8.3.1, which

terminates for each boundary after the first legal cut is found. This method yields the

fastest possible turnaround time. In order to improve cuts,Druid takes advantage ofidle

time, periods of inactivity on the user’s part. When the user stops working with the drawing

for a specified window of time,e.g., 0.25s,Druid enters acut-improvement phase. We

assume that a user often pauses during the construction of a drawing to mentally plan the

next steps, to study the current drawing, to simply take a break, etc.Druid attempts to take

advantage of these pauses in the user’s activity.

During the cut-improvement phase,Druid attempts to improve any cut with at least

one crossing by continually attempting to find new cuts between the boundary pair that the

original cut joins. The cut improvement for a single cut ends either whenDruid finds a cut

with zero crossings or when the maximum number of cut attempts has been reached. If an

improved cut is found, it replaces the old cut.

In order to minimize the impact on the user’s experience, the cut-improvement phase is

aborted the instant a user begins a new interaction. The cut-improvement phase is simple

to abort becauseDruid always relies on the current set of cuts. In this fashion,Druid

steadily improves the cuts until they are optimal, but does so without affecting the user’s

experience. In fact, it improves cuts entirely without the user’s awareness.

121

Chapter 9

Rendering

The ultimate goal when usingDruid is to produce an image of a scene in which surfaces

are displayed with their interiors filled with solid color (Fig. 9.1, lower left and lower

right).1 However, labeled knot-diagrams are most easily constructed and manipulated in

a schematic style which does not represent a completed image. In this schematic style,

which we calllabeled knot-diagram mode, a labeled knot-diagram is displayed with closed

curves denoting the boundaries of surfaces and with hash marks or arrows denoting the

sign of occlusion (Fig. 9.1, top). No attempt is made to fill regions of the canvas with

solid color. There are two important reasons to construct and manipulate a drawing using

this mode of visualization. The first is that an image can be produced very quickly, thus

improving the interactivity of the user’s experience,i.e., the task of redrawing the labeled

knot-diagram on the display will have a minimal impact on the turnaround times for user

interactions. The second reason is that a labeled knot-diagram can easily be visualized in

1To focus our research on the novel components ofDruid, we have relied on simplified im-
plementations of the less crucial components. For example,Druid uses fairly rudimentary curve-
editing tools which make it difficult to construct complex shapes. Another way in which we have
simplifiedDruid is the assignment of color to a surface, in whichDruid is confined to the repre-
sentation of surfaces with a single color throughout their interior.Druid could clearly be expanded
to permit the assignment of more complex paint patterns to a surface,e.g., color gradients, tiling
patterns, or pictures.

122

Chapter 9. Rendering

this mode when the labeling is illegal. The boundary segments might have illegal depths,

but they are simple to draw nonetheless.

Rendering is the process of translating a labeled knot-diagram into an image with solid

color fills applied to theregionsof the canvas (contiguous areas of the canvas disjointly

partitioned by boundary segments). While visualizing a labeled knot-diagram inrendering

modeis presumably the user’s ultimate goal, it is not necessarily the best mode of visu-

alization to use during the construction of the labeled knot-diagram. First, rendering is

considerably slower than producing an image in labeled knot-diagram mode. Second, and

more seriously, rendering cannot be performed on an illegal labeling. Thus, whenever a

labeling is illegal,Druid shows a blank canvas in rendering mode.

This chapter describes howDruid renders a legally labeled knot-diagram. Specifically,

we describe howDruid usesslices, which are similar to cuts (see Chapter 8), to determine

which surfaces cover a region and their relative depth ordering within the region. This

information must be determined in order to calculate a fill color for each region.

9.1 Overview

During most of a user’s interaction withDruid the drawing is generally shown inlabeled

knot-diagram mode, a mode of visualization in which surface boundaries are displayed as

closed curves, signs of occlusion are unambiguously indicated using either arrows or hash

marks on the bounded side of the boundaries, and boundary segment depths greater than

zero are dimmed to emphasize their occlusion. In such an visualization, the interiors of

surfaces are not filled with solid color. Only the markings denoting the signs of occlusion

indicate where the interiors of surfaces reside.

Renderingis the process by which a labeled knot-diagram (Fig. 9.1, top) is converted

into an image in which contiguous bounded regions of the canvas partitioned along bound-

123

Chapter 9. Rendering

ary segments are filled with designated colors. To render opaque surfaces (Fig. 9.1, bottom

left), Druid only needs to find the depth zero surface for each region. However, to ren-

der transparent surfaces (Fig. 9.1, bottom right) it must find the full depth ordering of

all surfaces for each region so a coloring model (see Metelli [30, 31]) can be applied.

Since an opaque surface is simply a specific case of transparency (with an opacity factor

of 1.0),Druid does not specifically perform opaque rendering. Instead, opaque rendering

is a natural consequence of performing transparent rendering on surfaces with an opacity

of 1.0.

The following steps must be performed in order to render a 21/2D scene:

1. Collect all regions.

2. Calculate region colors.

3. Calculate suspected enclosing regions.

4. Draw all regions.

The next sections describe each step in detail.

124

Chapter 9. Rendering

Figure 9.1: A labeled knot-diagram (top) can be rendered to produce an image in which regions are
filled with solid color (bottom left, bottom right). The surfaces associated with each region must
be determined so that a proper coloring for that region can be determined.

125

Chapter 9. Rendering

9.1.1 Collect All Regions

The full set of regions that result from a canvas partitioning must be collected before they

can be rendered. If the drawing was projected to a planar graph with crossings representing

nodes of the graph and boundary segments representing edges, then regions would be

the faces of the graph. Therefore, the sequence of crossings encountered during such a

traversal is a logical representation for a region. We define regions in a clockwise direction.

Druid finds a single region by traversing the region’s border starting from an arbitrary

crossing on the border. As the traversal visits new crossings, it always turns right. Thus,

the traversal will eventually arrive back at the starting crossing, at which point the re-

gion’s border will be defined and the proper sequence of crossings defining the border will

have been gathered. It is important not to define any region more than once since mul-

tiple records of the same region could cause potential errors during rendering and other

algorithms that rely on knowledge of the regions. Note that a boundary segment can be

traversed in two different directions, each of which represents a uniquedirected boundary

segment. For this reason, asDruid traverses a boundary segment it checks the correspond-

ing directedboundary segment against a list of all directed boundary segment traversals

that have occurred to this point in the region collection process. A boundary segment only

bounds two regions, and a clockwise (right-turning) traversal of the two regions will tra-

verse the shared boundary segment in different directions. Thus, once a boundary segment

has been traversed in a particular direction, it can never be traversed in that direction again.

If Druid finds the most recently traversed directed boundary segment in the list of previ-

ously traversed directed boundary segments, then the region has already been defined and

Druid terminates the traversal and definition of the region currently being collected.

Druid finds all regions of the drawing by iterating over all crossings in the drawing,

attempting a traversal in all possible directions away from the crossing. This must be done

not only for boundary-to-boundary crossings, but also for boundary-to-cut crossings, cut-

126

Chapter 9. Rendering

to-cut crossings, and boundary-cut-T-junctions. Note that there are situations in which it

is important to find infinitely thin regions residing within the infinitely thin gap that a cut

defines. Thus, traversals originating from boundary-to-cut crossings must be performed

six times since the cut at the crossing can be traversed in four distinct ways and the bound-

ary at the crossing can be traversed in two distinct ways. The cut can be traversed in two

directions on the inside of the cut and in two directions on the outside of the cut whlie

the boundary can be traversed in two directions. Likewise, traversals originating from

cut-to-cut crossings must be performed eight times.

9.1.2 Calculate Region Colors

Transparency Coloring Model

Druid uses Metelli’s episcotister model to determine region colors [30, 31]. This model

is effectively the same as one of the more common transparency models used by modern

graphics systems (see Angel [3]). Each surface has two properties, a color and an opacity.

For a set of overlapping surfaces, the perceived color of the subset of surfaces below and

including depthi is:

Si = Oi ·Ci +(1−Oi) ·Si+1 (9.1)

whereOi is the opacity of the surface at depthi, Ci is the RGB color of the surface at depth

i, andSi is the perceived RGB color of the subset of surfaces below and including depthi.

The background canvas has an implicit opacity of 1.0. Notice that for the set of surfaces

below and including depth zero the perceived colorS0 is the perceived color of the region,

i.e., the RGB color that will be used to render the region. It is important to realize that

this transparency model requires that the depth ordering of the surfaces be determined in

advance.

127

Chapter 9. Rendering

Using Slices to Find Region Colors

To find the surfaces that cover a region and their depth ordering within the region,Druid

uses aslice. A slice is similar to a cut except that instead of connecting two boundaries of

a surface, it connects a boundary of a surface to an arbitrary location within the surface’s

interior (Fig. 9.2). To find the surfaces associated with a region,Druid finds slices that

originate at a location inside the region and terminate on surrounding boundaries at various

depths. This process establishes a depth-ordering for all of the surfaces associated with the

region in question so that a coloring model can then be applied. For simplicity,Druid only

uses straight horizontal slices that extend to the left from theslice origin, the point from

which the slice originates. Although slices could extend in any direction, this assumption

simplifiesDruid’s implementation.

slice

boundary

slice origin

Figure 9.2: A slice connects a boundary to a location inside the bounded surface. Slices are used
to find the depth ordering of the surfaces associated with a particular region. This must be done in
order to render a scene.

For simplicity,Druid only considers slices that cross the region’s boundary once. To

cross the region’s boundary a greater number of times the slice would have to exit and

and reenter the region, which is analogous to a cut which exits and reenters a surface.

Note that the sequence of points defining the region’s boundary is known in advance of

finding a slice origin,i.e., every point of the piecewise linear boundary segments defining

the region’s boundary,i.e., a polygon, was collected when the region was collected in

Section 9.1.1. We can use the points defining the region’s boundary to easily find a legal

128

Chapter 9. Rendering

slice origin by testing at most two potential slice origins. These two points are determined

using the point furthest left of the region’s boundary (see Fig. 9.3).

Fig. 9.3 shows howDruid finds a legal slice from a region. There are two boundary

segments associated with the point furthest left of the region’s boundary, the boundary

segment that precedes the point furthest left and the boundary segment that follows it.

By taking the midpoint of one of these boundary segments and then traveling to the right

a very small distance, we can find a slice origin that is guaranteed to cross the region’s

boundary exactly once. However, both possible boundary segments are not guaranteed

to produce a legal slice origin,i.e., one that is located inside the region and crosses the

boundary exactly once. Determining which of the two possible boundary segments will

result in a legal slice origin is a simple matter of trying both and seeing which one works

(Fig. 9.3).

Invalid slice origin

Figure 9.3: Slice origins for three sample regions defined by a polygon of piecewise linear boundary
segments. Note that when a user constructs smooth curves, a large number of very small line
segments generally define the polygon that represents a region, thus approximating a spline curve.
These figures exaggerate the polygonal nature of a region to clarify how slice origins are found.
The point furthest left on each region’s boundary is marked with a square. The two potential slice
origins for each region are marked with circles and their associated slices are marked with thick
horizontal lines. The two potential slice origins are calculated by finding the midpoints of the
boundary segments that precede and follow the point furthest left and then traveling to the right a
small distance (exaggerated in these figures). In the left and center examples, both potential slice
origins are legal and either can be accepted. In the right example, however, only one of the two
potential slice origins is legal since the other potential slice origin lies outside the region.

Note that we cannot simply take the point furthest left and move a small distance to

129

Chapter 9. Rendering

the right because the slice would then cross that point instead of one of the segments

defining the region’s border (see Fig. 9.3, right). Having a line intersect a point represents

a nongeneric situation and is undesirable because the many algorithms that depend on

slices can behave unpredictably if a piecewise linear line segment crosses a slice precisely

at its endpoint.

Once a legal slice origin has been found for a region, the surfaces that cover that region

and their depth ordering can be determined. Fig. 9.4 shows how the surface coverings

for a region are found by repeatedly initiating traversals along the slice such that each

subsequent traversal is initiated from an iteratively increasing depth. The first traversal

starts at depth zero. As the slice is traversed, required depth changes are made as the

traversal goes under and comes out from under surfaces at crossings along the slice. This

process is calledslice weavingthe slice and is closely related tocut weaving, as described

in Section 8.3.4. Cut and slice weaving are both related to boundary traversal (see Section

7.3 and Chapter 11). The slice is traversed,i.e., woven, until a boundary-to-slice crossing

is found where the crossing boundary’s depth matches the slice’s current traversal depth,

i.e., a legal T-junction (see Fig. 8.2). Once the slice traversal reaches a legal T-junction,

the traversal is terminated and the surface whose boundary has been found is assigned a

position in the region’s depth ordering corresponding to the depth at which the traversal

was initiated.

If a slice traversal fails to find a terminating boundary for its initiated depth, then there

is no surface covering the region at that depth. Assuming the drawing isvertically compact

(see Section 13.2), such an occurrence means no surfaces can possibly cover the region at

a deeper depth than the depth that was just attempted, so the traversal loop is terminated.

When the traversal loop ends, all surfaces covering the region have been identified and

sorted based on the depth at which they cover the region. A coloring model can then be

used to determine a single fill-color for the region.

In Fig. 9.4 the rendering in (a) shows a drawing of a transparent red circular surface

130

Chapter 9. Rendering

above a green vertical cigar-shaped surface above a blue horizontal cigar-shaped surface.

The three slices shown in the figure demonstrate how the depth covering is determined for

the central region.Druid starts by finding a slice origin within the central region. It then

repeatedly initiates slices from the slice origin, initiating the process with an increasing

depth each time. The depth is initially zero, as shown in (b). The first crossing along the

slice cannot form a legal T-junction, but the second crossing can. Therefore, the second

boundary along the slice bounds the surface that covers the central region at depth zero,

i.e., the red circle. This process is then repeated at a deeper depth,i.e., one, as shown in

(c). The first boundary along the slice forms a legal T-junction. Thus, the green vertical

cigar covers the central region at depth one. Likewise, as shown in (d), when starting at

depth two, a legal T-junction is not found until the third crossing along the slice. Thus, the

blue horizontal cigar covers the central region at depth two.Druid then attempts a slice at

depth three (not shown). It fails to find a legal T-junction for that slice and therefore stops

seeking surfaces that cover the central region.Druid now has the depth ordering for all

surfaces covering the central region: red→ green→ blue. A coloring model can now be

applied to calculate a single color for the region.

131

Chapter 9. Rendering

(a) (b)

1 1

11

1

1 1

1

1

1

2

2

1

0
0

0

0

(c) (d)

1 1

11

1

1 1

1

1

1

2

2

1

1

1 1

11

1

1 1

1

1

1

2

2

1

2
1

0
0

0

0

0

Figure 9.4: To find the depth ordering for surfaces that cover a region,Druid initiates slices from
within the region at increasing depths. In the example above the depth ordering for the surfaces
covering the central region is found.Druid first attempts a slice starting at depth zero (a). The
slice is woven to a legal T-junction, which occurs at the second crossing along the slice,i.e., the red
surface. This process is repeated for depths one and two (c andd), yielding a final depth ordering
for the central region: red→ green→ blue.

132

Chapter 9. Rendering

9.1.3 Calculate Suspected Enclosing Regions

Once all the regions and their fill colors have been determined, they are incrementally

rendered one at a time. The effect of incremental rendering is that regions which are ren-

dered later in the rendering process will erase any features of the drawing that overlap their

area. Usually, this does not matter, because regions generally abut and do not overlap one

another. However, there are circumstances under which one region may overlap another

region, and one of the two regions must be rendered before the other to ensure that neither

region improperly erases the other.

Consider a drawing which consists of multiple disconnected labeled knot-diagrams.

Such a drawing is shown in Fig. 9.5, in which surface1’s labeled knot-diagram is discon-

nected from surfaces2 and3’s labeled knot-diagram. Note that regiona overlaps regions

b, c, andd (regiona’s area comprises the entire interior of surface1 since there are no

crossings on surface1’s boundary). Thus regionsb, c, andd lie entirely withina, i.e., they

areenclosed regionsof a anda is anenclosing regionof b, c, andd. If the enclosed regions

were rendered beforea, then the subsequent rendering ofa would effectively erase them.

Thus, it is crucial to rendera before renderingb, c, andd. In other words, it is crucial to

render a region before any of its enclosed regions. Note that the importance of rendering

the various regions in the correct order is unrelated to the actual depth ordering of the sur-

faces in the drawing because surfaces may be transparent,i.e., it does not matter if surface

1 is above or below surface2; it is still important to rendera beforeb.

Druid finds thesuspected enclosing regions(regions whichmight be enclosing re-

gions) for a region by finding those regions whose surface coverings are a subset of the

region’s surface covering. This information is gathered during slice weaving, as described

in Section 9.1.2. The slices that are used for rendering the drawing in Fig. 9.5 are denoted

by horizontal lines with their slice origins marked with a small disk. Notice that analysis

of the crossings along the slice originating ina yields a surface covering of{1}, as labeled

133

Chapter 9. Rendering

1

2

3

a

b

c

d

{1}

{1, 2}

{1, 2, 3}

{1, 3}

Figure 9.5: This drawing has two disconnected labeled knot-diagrams that partition into four total
regions, marked with letters. Regiona overlaps regionsb, c, andd. Likewise,a’s set of covering
surfaces,{1}, is a subset of those for regionsb, c, andd. The sets of surfaces covering each region
are labeled in the figure. Becausea’s set of covering regions is a subset of the other three regions’
sets of covering surfaces,a must be rendered before the other three regions.

in the figure,i.e., analysis ofa’s slice misses the fact that surfaces1 and2 lie within its

area and partially cover it. This mistake results from the fact that the slice origin lies just

to the right of the point furthest left on regiona’s border (see Section 9.1.2 and Fig. 9.3).

Analysis ofb’s slice discovers the set of covering surfaces{1, 2}. Since regiona’s surface

covering is a subset of regionb’s surface covering, itmight be crucial to rendera before

b. Thus,a is added tob’s suspected enclosing regions list andb will not be rendered until

all regions on its suspected enclosing regions list have been rendered.

The approach described above can produce false positives, in which one region is

added to another region’s suspected enclosing regions list when it is unnecessary to do so.

For example,b andd would be added toc’s suspected enclosing regions list as well as

134

Chapter 9. Rendering

a, even though it is not crucial to render them before renderingc. Doing so is harmless

however, soDruid makes no attempt to detect false positives.

9.1.4 Draw All Regions

Once the regions have been collected, their colors have been assigned, and their suspected

enclosing regions lists have been established, the drawing can be rendered, one region at

a time.Druid loops through all of the regions attempting to render each one. Any region

for which a member of its suspected enclosing regions list has not yet been rendered is

skipped. After attempting to render all regions, the loop is repeated on any regions that

were skipped. Since the addition of one region to another region’s suspected enclosing

regions list depends on the nonsymmetric subset relation between the two lists, there is

no risk that the suspected enclosing regions lists will contain cycles. The rendering is

complete when no regions remain to be rendered.

This final stage in the rendering process, the drawing of the regions, could conceiv-

ably be performed by a dedicated graphics system such as a graphics card instead of being

handled directly byDruid. Such an approach would consist of placing polygons in a three-

dimensional scene using a system like OpenGL. One polygon would be placed in the scene

for every surface covering of every region. Each polygon would be placed at a depth rela-

tive to the other polygons covering the same region that reflects the depth ordering for that

region. The graphics system would then perform the necessary transparency calculation

and produce the rendered image.

9.2 Exporting Druid Renderings

Although Druid is capable of representing and rendering interwoven surfaces, there re-

mains the question of how drawings constructed withDruid can be exported to other

135

Chapter 9. Rendering

applications. Most printers usepostscriptas a representation for vector-based graphics.

Likewise, many computer systems use standard vector-based file formats,e.g., pdf. In or-

der to export a renderedDruid image to another environment,Druid converts the image

to one of these standard formats. Notice that in our discussion of rendering, we have, in

effect, described a simple method for converting labeled knot-diagrams to a planar for-

mat. Thus, once every region has been discovered and its rendering color established, the

resulting rendering can be easily represented as a set of independent polygons, one poly-

gon for each region. This conversion is similar to the planarized graph method described

in sections 1.4 and 3.1.2 in which the drawing is converted into a planar graph and each

face is assigned a color independently of the other regions in the drawing. Thus, the same

planar graph that results from rendering is used both to produce an on screen visualization

and to exportDruid interwoven representation to other formats.

136

Chapter 10

Crossing-State Equivalence Classes

In Chapter 7 we described the basic search process whichDruid uses to find a legal label-

ing. There is a potentially serious problem with the search as it has been described so far

however. The search space size is exponential in the number of crossings in the figure and

a drawing can easily have hundreds of crossings, resulting in an enormous search space.

The heuristics described in Chapter 7 helpDruid search a reasonably large search space

quickly, but the search is inherently limited. There are two situations where the search

can suffer prohibitively. The first is a simple case in which the search space is simply

so large that the heuristics are insufficient to yield a search that terminates quickly. The

second case occurs when the minimum-difference solution has a fairly highL∆. In such

a case, minimum-difference solution’s bound provides does not truncate enough of the

search space to yield a search that terminates quickly, even if the search space size initially

seems moderate,i.e., the figure appears to be fairly simple.

During our research, we discovered a previously unrealized topological property of

21/2D scenes called thecrossing-state equivalence class rule. By building knowledge of

this rule intoDruid, we can effectively increaseDruid’s intelligence with respect to 21/2D

scenes,i.e., Druid better understands the semantics of overlapping surfaces as a result of

137

Chapter 10. Crossing-State Equivalence Classes

this rule. This improved understanding of 21/2D scenes can be exploited to vastly improve

Druid’s performance. The crossing-state equivalence class rule can be exploited in two

ways. First, since it represents a constraint on legal labelings, we can use it to eliminate

labelings from consideration that violate this constraint. In other words, we can use it

to vastly decrease the size of the search space, which we do by applying the crossing-

state equivalence class rule as an additional form of constraint propagation during the

search process. A second way to exploit this rule is to directly deduce the new labeling

that follows some user interactions, which is must faster than a search regardless of any

heuristics that are applied to the search process. The only user interaction we are aware of

that can be performed using the second method is a crossing-flip.

This chapter describes a spectrum of drawing complexities, describes how transfor-

mations between these complexities are performed, and then describes the crossing-state

equivalence class rule, which applies to drawings of a specific kind of complexity called

simple scenes. Chapters 11, 12, and 13 then describe how equivalence classes are found

and how they are exploited byDruid.

10.1 A Problem with the Labeling Search

The search as described in Chapter 7 has a problem. The search space size was established

in Section 5.2 to be 2C for a drawing withC crossings. A drawing may have hundreds of

crossings however, which can result in a prohibitively large search space. Even when a

drawing is relatively simple, there are cases where the minimum-difference solution has a

fairly largeL∆, and therefore does not provide a tight enough bound to guarantee that the

search ends in a reasonable time. In the best case, the effect of a long search merely slows

downDruid’s performance, thus detracting from the quality of the user’s experience. In

the worst case, however, the search can timeout without finding a solution.Druid is then

unable to perform the user’s action, an effect which is detrimental toDruid’s usefulness.

138

Chapter 10. Crossing-State Equivalence Classes

Consider the crossing-flip illustrated in Fig. 10.1 (top row).Druid fails to label this flip

in under 120 seconds in fifty percent of trials despite the apparent simplicity of the figure.

This problem is due to the fact that the minimum-difference solution has anL∆ of sixteen,

which is an insufficient bound the search tightly. An additional problem is that the search

will have to explore realtively far from a user’s clicked crossing to discover every crossing

that must be flipped, and consequently, iterative deepening does not assist very well in the

discovery of an early solution. Alternatively, consider the eight crossing-flips illustrated

in Fig. 10.1 (bottom row). Despite the fact that each of these flips involve relatively small

and topologically simple areas of the drawing,i.e., areas involving few crossings,Druid

takes thirty-five seconds on average to perform one of these flips and fails to perform them

in under 120 seconds in two percent of trials.

We have discovered a previously unrealized topological constraint on 21/2D scenes

termed thecrossing-state equivalence class rule. Exploitation of the crossing-state equiv-

alence class rule permits us to significantly improveDruid’s performance, thus increasing

the complexity of drawings that a user can construct. There are two labeling tasks which

Druid must perform:labelingandrelabeling. Labeling is the task of assigning a labeling

to an unlabeled or a partially labeled figure. Relabeling is the task of finding a new la-

beling following a crossing-flip. Crossing-state equivalence classes are applied to the two

labeling tasks in very different ways. When applied to tree search labeling, they are used

to vastly reduce the search space size by exploiting that fact that certain groups of cross-

ings must flip as a unit. When used for relabeling, they are used to obviate the need for

a search all together. Instead, the new labeling that results from a crossing-flip is directly

deduced by applying the crossing-state equivalence class rule. The ways in which equiv-

alence classes are exploited are described in greater detail in Chapter 13. To simplify our

exposition, where it is important to distinguish the various labeling methods, we useDruid

(SEARCH) to refer to a labeling search that makes no use of equivalence classes (as was

described in Chapter 7),Druid (CSEC SEARCH) to refer to a labeling search that exploits

equivalence classes, andDruid (DIRECT) to refer to the direct relabeling method.

139

Chapter 10. Crossing-State Equivalence Classes

Figure 10.1: The labeling search described in Section 7 performs relatively poorly on the two
crossing-flips shown here. In the top row a flip has been performed which requires many crossings
to be flipped as a unit. In the bottom row, there are eight topologically identical flips,i.e., many
equivalence classes represent features that occur in multiple places in the drawing. Any one of these
flips requires a significant search time to perform due to the complexity of the overall drawing.

140

Chapter 10. Crossing-State Equivalence Classes

10.2 Crossing-State Equivalence Classes

10.2.1 Definition of Key Concepts

Fig. 10.2 shows a 21/2D scene of interwoven surfaces. A section of a boundary joining

two crossings is termed aboundary segment. We observe that the canvas is partitioned by

boundary segments into disjointregions. In Fig. 10.2, the regions of the canvas are labeled

with letters. We observe that zero or more surfaces (numbered in Fig. 10.2) cover every

region and that at least one surface covers any region that lies within the interior of some

surface. For example, surfaces1 and3 cover regionk while surfaces1, 2, and3 cover

regionm.

a

b c
d

e
f g

h

i

j

k

m
n o

p

q

1

2
3

Figure 10.2: An interwoven 21/2D scene. Regions are labeled with letters, surfaces with numbers,
and crossing-state equivalence classes with shapes.

To define and prove the crossing-state equivalence class rule, we first define the fol-

lowing terms:

• A superregionis a set of contiguous regions covered by a single surface. For exam-

ple, in Fig. 10.2,{b, g, h, n} is a superregion of surface2.

• A borderof a superregion is the set of boundary segments which define its perimeter.

141

Chapter 10. Crossing-State Equivalence Classes

• A shared superregionis the maximum superregion common to two surfaces,e.g.,

{g, m} is a shared superregion of surfaces1 and2.

• A corner of a shared superregion is a crossing where adjacent boundary segments

of the border belong to different surfaces. In Fig. 10.2, corners corresponding to the

shared superregion{m, n} common to surfaces2 and3 are marked with circles.

The corners of a shared superregion comprise thecrossing-state equivalence classfor

that shared superregion. Notice that every crossing in a drawing is a corner of some shared

superregion. Consequently, every crossing is a member of some crossing-state equivalence

class.

10.2.2 Reducing General 21/2D Scenes to Simple 21/2D Scenes

Drawings can be divided into a number of complexity classes which can be placed on a

spectrum of drawing complexities with drawings of maximum complexity (those with the

loosest assumptions about a drawing’s structure) at one end and drawings of minimum

complexity at the other. Fig. 10.3 shows this spectrum. Asimple surfaceis a surface

with a single boundary component which does not intersect itself,i.e., a Jordon curve.

Two steps are required to reduce a general 21/2D scene to a simple 21/2D scene. First, any

surface with multiple boundary components must be converted into a surface with a single

boundary component. Second, any self-overlapping surfaces must be converted into a set

of non-self-overlapping surfaces.

We perform both surface conversions usingcuts. When a cut connects two boundaries,

those boundaries are joined into a single boundary component (Fig. 8.1). Likewise, a self-

overlapping surface with a single boundary component can be cut into multiple smaller

surfaces which abut and such that no surface in the final scene self-overlaps (Fig. 10.4).

142

Chapter 10. Crossing-State Equivalence Classes

Add cuts such that all surfaces
have a single boundary (so no
surface has holes)

Add cuts such that no
surface self-overlaps

Add cuts such that the
relative surface depth
relation is a DAGGeneral

2 D scenes1 2

Decreasing generality (stronger assumptions)

Holeless
2 D scenes1 2

Layered
2 D scenes1 2

Simple
2 D scenes1 2

Non-self-overlapping
2 D scenes1 2

Add cuts such that all surfaces
have a single boundary (so no
surface has holes)

Add cuts such that no
surface self-overlaps

Figure 10.3: Spectrum of levels of generality of 21/2D scenes. Generality decreases from left
to right. Scenes further to the right along this spectrum make stronger assumptions about the
properties of a scene and those assumptions preclude more general scenes that can reside further
to the left along the spectrum. The transition from simple scenes to layered scenes is analogous
to depth sortrendering. The level of generality thatDruid maintains is theholelesslevel, i.e.,
Druid finds cuts to remove holes, but makes no attempt to convert self-overlapping surfaces into
non-self-overlapping surfaces.

10.3 The Crossing-State Equivalence Class Rule

Let X andY be the two surfaces whose boundaries intersect at a crossing. We observe that

the crossing can only be in one of two states. Either surfaceX is above surfaceY or surface

Y is above surfaceX.

TheoremAll crossings in a crossing-state equivalence class must be in the same state.

A

B

A

cut

A

B

Figure 10.4: A cut connects two locations on the same boundary to break the boundary into two
boundaries and the surface into two surfaces.

143

Chapter 10. Crossing-State Equivalence Classes

Proof We first prove the above theorem for simple surfaces. Because any general

21/2D scene can be reduced to a simple 21/2D scene, this suffices to prove the theorem in

the general case. We begin by observing the following:

• We observe that for every region there is a total depth ordering of the surfaces which

cover that region.

• The total depth ordering of adjacent regions is identical except for the addition or

deletion (depending on the sign of occlusion) of the surface whose boundary seg-

ment separates the two regions.

• It follows that the relative depth of two surfaces in adjacent regions remains the same

if the boundary segment which divides the regions belongs to neither surface.

• It follows that the relative depth of two surfaces is constant within a shared superre-

gion.

• The relative depth of the two surfaces whose boundaries intersect at a crossing is the

same as the relative depth of those surfaces in the region they corner.

Consequently, the relative depth ordering of two surfaces at every crossing in a crossing-

state equivalence class must be the same.�

For example, in Fig. 10.2, consider the superregion{m, n} shared by surfaces2 and3.

The only segment interior to the superregion is part of the boundary of surface1. There-

fore, the relative depths of surfaces2 and3 cannot change along that boundary segment.

144

Chapter 11

Finding Crossing-State Equivalence

Classes

The labeling search described in Chapter 7 suffers from a serious problem. It can take too

long to terminate if the drawing is of sufficient complexity or if the minimum-difference

solution has too great aL∆ to provide a tight enough bounds. In Chapter 10 we described a

topological property of 21/2D scenes which can be exploited to improvedDruid’s perfor-

mance. In Chapter 13 we will describe how equivalence classes are exploited. First, how-

ever, we describe in this chapter howDruid finds the crossing-state equivalence classes of

a drawing. We first describe this process using topological concepts. We then describe the

process in more algorithmic terms. Later in this chapter we present experimental results

that demonstrate the performance of the search for crossing-state equivalence classes.

11.1 Topological Description

Every crossing is the corner of some shared superregion that represents an area of overlap

between two surfaces. A crossing’sneighborsare the two corners of the crossing’s shared

145

Chapter 11. Finding Crossing-State Equivalence Classes

superregion which precede and follow the crossing on the border of the shared superregion

(Fig. 11.1). Equivalence classes represent the reflexive, symmetric, transitive closure of

the crossing-state neighbor relation.

To find the equivalence classes for a legally labeled knot-diagram,Druid first searches

for every crossing’s two neighbors. Once the neighbors of all crossings have been found,

equivalence classes can be constructed by computing the reflexive, symmetric, transitive

closure of the neighbor relation.

Every crossing is associated with twounoccludedsegments which the crossing cannot

occlude regardless of the crossing-state, and twopotentially occludedsegments, one of

which will be occluded and the other unoccluded depending on the crossing-state (Fig.

5.5).

A potentially occluded
segments of A

traversal
boundary

crossing
boundary

B

Figure 11.1: A crossing (thick square) and itsneighbors(thin squares). A second crossing (thick
triangle) and itsneighbor(thin triangle). A crossing’s neighbors are the two corners of the cross-
ing’s shared superregion which precede and follow it on the border. Note that for the crossing
marked with a thick triangle, the neighbor that precedes it is the same as the neighbor that follows
it, i.e., it has only one neighbor, the thin triangle.

Call the crossing thatDruid is seeking aneighbor for crossingA. Two boundaries

cross atA, thetraversal boundaryand thecrossing boundary. This distinction is arbitrary.

Druid searches for one ofA’s two neighbors by traversing away fromA along the traversal

146

Chapter 11. Finding Crossing-State Equivalence Classes

boundary in the direction of the potentially occluded segment on the traversal boundary.

Before the traversal begins,Druid initializes thetarget crossing boundary depthwith the

crossing boundary’s depth atA. During the traversal, the target crossing boundary depth

is modified as the traversal goes under and comes out from under surfaces encountered

at crossings. The traversal ends when it reaches the neighboring corner of the shared

superregion. The neighboring corner is identified using the following criteria:

1. The boundaries of the same two surfaces that cross atA must also cross at the neigh-

boring corner.

2. The traversal must arrive at the neighboring corner along one of that corner’s poten-

tially occluded segments.

3. The crossing boundary must be at the target crossing boundary depth at the neigh-

boring corner,i.e., it must have the same traversal-adjusted depth as the crossing

boundary atA.

The first crossing the traversal finds that satisfies all three criteria is the first neighbor of

A. By switching the role of traversal boundary and crossing boundary atA, the second

neighbor ofA is found. The next sections describe the process of finding crossing-state

equivalence classes in greater detail.

11.2 Algorithmic Description

The search for equivalence classes on a legally labeled knot-diagram can be performed

on a subset of the entire drawing,i.e., if some set of crossings in the drawing require

new assignment to equivalence classes, the following algorithm can be applied to that set

without having to apply the algorithm to the drawing as a whole. We describe this process

below.

147

Chapter 11. Finding Crossing-State Equivalence Classes

The algorithm for finding equivalence classes on a legally labeled knot-diagram is

performed with the following steps:

1. Prepare to find all crossing class neighbors in the drawing.

2. Find all crossing neighbors in the drawing.

3. Calculate the reflexive, symmetric, transitive closure of the crossing neighbor rela-

tion.

11.2.1 Preliminaries

The search for equivalence classes is initiated on a set of crossings that require assignment

to equivalence classes. This set is called thesearch list. There are a number of reasons

that a crossing may be on this list. The most common reasons are that the crossing was

just created or one of the the boundary the crossing is on was just connected to another

boundary through the construction of a new cut.

Before the search for equivalence classes can be performed, some necessary mainte-

nance must be performed. First, any crossing on the same boundary as a crossing in the

search list must itself be added to the search list. Second, any equivalence class containing

a crossing on the search list must be destroyed before the replacement equivalence class is

found.

At this point, the search can be performed on the search list.

11.2.2 Find All Crossing Neighbors in the Drawing

The first step in finding equivalence classes on a labeled knot-diagram is to find all of

the crossing neighbors,i.e., to find two neighbors for each crossing in the search list, one

preceding the crossing and one following it on the shared superregion’s border. Although

148

Chapter 11. Finding Crossing-State Equivalence Classes

we use the definition of a shared superregion to illustrate what an equivalence pair is, the

actual algorithm for finding crossing neighbors does not require any knowledge of the

shared superregions.

The search for one neighbor consists of a traversal away from the crossing along one

of its two potentially occluded boundary segments to find the corner that should be paired

with it. Note that the behavior of this algorithm,i.e., traversing a boundary and tracking

relevant depth changes as the traversal visits crossings, is closely related to the boundary

traversal that is performed during the labeling search (see Section 7.3) and is also closely

related tocut weavingandslice weaving, which we discuss in sections 8.3.4 and 9.1.2.

The following pseudo-code illustrates the algorithm for finding crossing neighbors.

UPDATE DEPTH() updates depthD of a boundary traversal according to the labeling

scheme:

UPDATE DEPTH(D, T, R) . D: boundary depth,T: traversal boundary,R: traversal crossing

if T goes under atR

D← D+1

else ifT comes out from under atR

D← D-1

elseD is unchanged

FIND NEW CROSSING NEIGHBORS() finds all necessary crossing neighbors by initiating

boundary traversals from each crossing in the search list along the potentially occluded

boundary segments:

FIND NEW CROSSING NEIGHBORS(C) . C: the search list

for eachc∈ C

for b = 1 through 2 . Two passes: left, right neighbors

149

Chapter 11. Finding Crossing-State Equivalence Classes

if b = 1

B← c’s first potentially occluded boundary segment

else

B← c’s second potentially occluded boundary segment

T← B’s boundary

P← the opposing boundary atc

D← depth ofP’s unoccluded boundary segment atc

F← false

while F = false . See note 1 below.

R← the next crossing along the traversal

if the opposing boundary atR is notP

UPDATE DEPTH(D, T, R) . See note 2 below.

else ifP’s sign of occlusion atRdoes not potentially

occlude the boundary segment the traversal arrived on

UPDATE DEPTH(D, T, R) . See note 3 below.

else ifP’s unoccluded depth atR is notD

UPDATE DEPTH(D, T, R) . See note 4 below.

else

Create the crossing neighbor pair (c, R).

F← true . See note 5 below.

Notes

1. Traverse alongB away fromc until the next corner is found.

2. Continue with the traversal since corners must cross the same pair of boundaries and

Rcrosses a different pair of boundaries thanc.

3. Continue with the traversal since corners must corner the same quadrant,i.e., the

same shared superregion, andRcorners a quadrant that differs from that ofc.

150

Chapter 11. Finding Crossing-State Equivalence Classes

4. Continue with the traversal since the shared superregion must be at the same relative

depth at all of its corners since surfaces cannot interpenetrate.

5. The crossing is a corner of the correct quadrant involving the correct boundary at

the correct depth, thus it is the corner being sought. Make the equivalence neighbor

pair and continue to the next crossingc∈ C.

We observe that since this algorithm is performed in a series of boundary traversals, sur-

faces must have a single boundary component if the algorithm is to perform correctly.

However, surfaces may self-overlap,i.e., the scene can be a holeless scene; it does not

have to be a simple scene (see Fig. 10.3). Consequently, the drawing may contain cuts,

and the boundary traversals must properly traverse boundaries that are connected by cuts.

Thus, when the algorithm reassignsR, the next crossing along the traversal, the traversal

must properly traverse the surface’s single boundary by turning into and out of cuts at

boundary-cut-T-junctions.

11.2.3 Calculate the Reflexive, Symmetric, Transitive Closure of the

Crossing Neighbor Relation

Once all crossing neighbor pairs have been found, they must be grouped into equivalence

classes. We observe that since each crossing is a member of two crossing neighbor pairs,

and since the equivalence class is an equivalence relation, crossing neighbor pairs can be

reflexively, symmetrically, transitively collected into larger sets of crossings, which we

call equivalence classes. Once the crossings have been assigned to equivalence classes,

the crossing neighbor pairs of no further use and are discarded.

151

Chapter 11. Finding Crossing-State Equivalence Classes

11.3 Performance of the Search for Crossing-State Equiv-

alence Classes

We want to exploit crossing-state equivalence classes because they decrease the search

space size during labeling and eliminate the need to search during relabeling. However,

they must be found in advance. Therefore, it is important to establish whether crossing-

state equivalence classes can be found a timely fashion. In order to measure the per-

formance of the search for crossing-state equivalence classes, we performed a series of

experiments on a set of drawings of steadily increasing complexity (Fig. 11.2).

152

Chapter 11. Finding Crossing-State Equivalence Classes

(a) (b)

(c) (d)

Figure 11.2: To test the performance of the search for crossing-state equivalence classes, we con-
structed a set of drawings that steadily increase in complexity. At any step in the progression,
two new crossings are added to the figure. At all steps, the corresponding drawing has a single
crossing-state equivalence class that contains every crossing in the drawing.

153

Chapter 11. Finding Crossing-State Equivalence Classes

Figs. 11.3 and 11.4 show plots of the performance of the search for crossing-state

equivalence classes relative to the number of crossings in the figure. All experiments

were conducted on a 1.6 GHz PowerMac G5. We observe based on the plots that the

performance scales polynomially in the number of crossings.

10 20 30 40 50
Total Number of Crossings

0

0.05

0.1

0.15

0.2

0.25

0.3

Ti
m

e
(s

)

Figure 11.3: Search time for crossing-state equivalence classes vs. number of crossings. We
observe that the performance is worse than linear in the number of crossings. Note that the actual
time is very fast (.3s for fifty-two crossings).

154

Chapter 11. Finding Crossing-State Equivalence Classes

10 20 30 40 50
Total Number of Crossings

0.001

0.01

0.1

Ti
m

e
(s

)

Figure 11.4: Search time for crossing-state equivalence classes vs. number of crossings with a
logarithmic y-axis. We observe that the performance is better than exponential in the number of
crossings. Since the performance is worse than linear in the number of crossings (see Fig. 11.3),
we observe that the performance is polynomial in the number of crossings. Note that the actual
time is very fast (.3s for fifty-two crossings).

155

Chapter 12

Equivalence Class Independence

In Chapter 10 we present a constraint on legal labelings, the crossing-state equivalence

class rule. At first glance, this rule seems to embody the crucial aspects of a legal label-

ing, i.e., it appears to be asufficientcondition for determining the legality of a labeling.

This is not so. The equivalence class rule is anecessarybut not sufficient condition of

legal labelings. In other words, there are drawings for which some crossing-state equiva-

lence class instantiations are impossible,i.e., cannot be legally labeled. The reason some

equivalence class instantiations can be impossible is that equivalence classes can be in-

terdependent,i.e., the state of one equivalence class can place constraints on the states of

one or more other equivalence classes. One situation in which a lack of equivalence class

independence can affectDruid’s behavior is the crossing-flip interaction. If a crossing-flip

results in a possible equivalence class configuration,i.e., it can be legally labeled, we call

that flip atomicsince it corresponds to an elemental 21/2D scene change. However, if a

crossing-flip results in an impossible equivalence class instantiation, then other equiva-

lence classes must also be flipped in addition to the one the user explicitly flipped. Such

flips arenonatomicand present problems forDruid due to inherent ambiguities in their

interpretation. In other words, when the user attempts a nonatomic flip, there are gener-

ally multiple possible results andDruid cannot easily distinguish the user’s intended result

156

Chapter 12. Equivalence Class Independence

from the other results. Thus, when performing nonatomic flips, there is a risk thatDruid

will not produce the result that the user intends.

In this chapter we demonstrate equivalence class dependence, andatomic and

nonatomicequivalence class flips. With the matter of equivalence class independence

settled, we will then proceed to describe howDruid exploits equivalence classes in the

case of atomic flips in Chapter 13.

12.1 Equivalence Class Independence

An important fact about equivalence class states is that, like crossing-states, they are not

necessarily independent in all drawings. For a drawing withE equivalence classes, it may

not be true that there exist 2E equivalence class configurations for the drawing. 2E simply

represents an upper bound on the number of configurations a drawing can assume,i.e.,

some instantiations of equivalence class states may be impossible, by which we mean that

the corresponding knot-diagram cannot be legally labeled.

Fig. 12.1 shows a simple scene of three overlapping disks. This particular scene can

be represented using a DAG, which will aid our discussion. Since there are three surfaces,

and each surface is an element of a partially ordered set, there are only six possible DAGs

that the surfaces of the drawing can assume: 1→ 2→ 3, 1→ 3→ 2, 2→ 1→ 3, 2→ 3

→ 1, 3→ 1→ 2, and 3→ 2→ 1.

While the drawing can assume six possible configurations, it has three equivalence

classes, which naively suggests that there are 23 (or eight) configurations. The two ex-

tra configurations correspond to equivalence class state instantiations which form a cycle

rather than a DAG. One cycle is 1→ 2→ 3→ 1. The other cycle is 1→ 3→ 2→ 1.

In Fig. 12.1, the marked equivalence class cannot be flipped without flipping one of the

other two equivalence classes as well in order to achieve a knot-diagram that can be legally

157

Chapter 12. Equivalence Class Independence

1

2 3

Figure 12.1: This figure shows a simple scene consisting of three overlapping disks. Notice that
since this drawing can be represented as a DAG, it can be described by a partial ordering of the
surfaces. There are only six DAGs and corresponding partial orderings that can describe this draw-
ing, but there are three equivalence classes, which naively suggests that there ought to be 23 (or
eight) equivalence class instantiations for the drawing. This discrepancy implies that two of the
theoretical equivalence class instantiations are illegal,i.e., they cannot be legally labeled.

labeled. However, flipping either of the other two equivalence classes could constitute a

valid solution to the problem, and each would produce a different result. The two possible

results of flipping the marked equivalence class are shown in the two bottom drawings of

Fig. 12.2. Flipping one of the other equivalence classes would result in the partial ordering

3→ 1→ 2, shown at the bottom left of Fig. 12.2, but flipping the other equivalence class

would result in 2→ 3→ 1, shown at the bottom right.

158

Chapter 12. Equivalence Class Independence

12.2 Atomic vs. Nonatomic Crossing-State Equivalence

Class Flips

A crossing-state equivalence class flipis the method by whichDruid (DIRECT) performs

a crossing-flip interaction. To perform a crossing-state equivalence class flip,Druid (DI-

RECT) flips all members of the clicked crossing’s equivalence class as a unit and then

attempts to relabel the knot-diagram.

The crossing-state equivalence class rule might seem to imply that a crossing-flip user-

interaction has a uniquely determined effect on the crossing-states of the knot-diagram,

i.e., every crossing in the equivalence class of the clicked crossing must be flipped, and no

crossing in any other equivalence class need be flipped. However, as we have shown, it

is not always possible to flip a single equivalence class without flipping other equivalence

classes,i.e., the result of flipping a single equivalence class can, in some cases, result in an

illegal labeling. The user’s ultimate intent must be to flip more than one equivalence class.

Unfortunately, inferring which equivalence classes must be flipped in order to achieve the

user’s intent is impossible since there is no way to resolve the inherent ambiguity.

An atomiccrossing-state equivalence class flip is one that can be performed indepen-

dently of all other equivalence class flips in the drawing. Such a flip corresponds to an

atomicchange in a 21/2D scene. If a flip results in an illegal labeling, then it can only be

performed by flipping other equivalence classes as well. For this reason, we call such a

flip nonatomic. Nonatomic flips can often be interpreted in multiple ways,i.e., there may

be multiple legal labelings that a nonatomic flip could correspond to depending on which

other equivalence classes are flipped in addition to the equivalence class the user clicked

on. This inherent ambiguity makes it impossible forDruid to deduce the user’s intent,

i.e., Druid cannot know which of the multiple possibilities the user intends when the user

performs a nonatomic flip.

159

Chapter 12. Equivalence Class Independence

We can avoid the ambiguity inherent in nonatomic flips by exploiting the fact that

any nonatomic flip can be decomposed into a sequence of atomic flips, each of which is

unambiguous,i.e., there is only one way to interpret the user’s intent.Druid forces the user

to perform a nonatomic flip by performing a sequence of atomic flips instead. Fig. 12.2

shows how a nonatomic flip is broken down into a sequence of atomic flips. An attempt

to flip the marked equivalence class in the top drawing would be nonatomic, since the

result cannot be legally labeled. There are two possible intended outcomes, each of which

requires flipping one of the other equivalence classes in the drawing while leaving the third

equivalence class unflipped. The two possible outcomes are shown at the bottom of the

figure. Druid cannot know which outcome actually corresponds to the user’s intent, and

thus cannot perform the user’s specified flip without also producing a possibly unintended

result. However, both outcomes can be accomplished by a sequence of two atomic flips.

The first atomic flip is shown in the smaller intermediate drawings. The second atomic flip

corresponds to the equivalence class the user originally intended to flip, which will have

become atomic as a result of the intermediate flip.

When the user attempts to perform a nonatomic flip,Druid (DIRECT) does not perform

the flip, but rather helps the user choose a sequence of atomic flips which will yield the

desired result by displaying other equivalence classes which might need to be flipped as

blinking on and off.

160

Chapter 12. Equivalence Class Independence

first possible intended result second possible intended result

intermediate drawingintermediate drawing

1

2 3

atomic flip of circlesatomic flip of circles

nonatomic flip of circles nonatomic flip of circles

atomic flip of squares atomic flip of triangles

Figure 12.2: This figure shows the drawing from Fig. 12.1 at top, with a nonatomic equivalence
class marked with circles. Flipping this equivalence class is a nonatomic flip since the result cannot
be labeled without flipping other equivalence classes as well. The user’s intent when attempting to
flip this equivalence class must correspond to one of the two possible results shown at the bottom,
but there is no way forDruid to tell which result is actually intended. However, each of the two
results can be decomposed into a sequence of two atomic flips, the first of which are shown in the
small intermediate drawings, and the second of which are shown below. The intermediate atomic
flip will convert the desired nonatomic flip into an atomic flip, thus resolving the ambiguity.

161

Chapter 12. Equivalence Class Independence

Although Druid (DIRECT) currently employs the above method of resolving the am-

biguity associated with nonatomic flips, there are alternate methods which could be used.

The following lists some alternate methods for handling nonatomic flips:

1. Arbitrarily choose from among the various legal labelings consistent with the flip.

2. Allow the user to fix the states of some equivalence classes so that they cannot be

flipped. Follow this user-specified constraint by performing Step 1 above.

3. Discover all possible results. Present them to the user in a table and ask the user to

choose among them.

An interesting question is which of the proposed methods for handling nonatomic flips is

best from the point of view of good user interface design. Our current method of prohibit-

ing nonatomic flips is not necessarily the best approach. IfDruid used the first method

listed above, it would perform a nonatomic flip by arbitrarily choosing one of the various

legal labelings that result from propagating the constraint. As a result, all clicks on a cross-

ing would yield a change to the drawing, which is desirable since the user’s intent clearly

requires some kind of change to occur. This method might reduce the cognitive burden

on the user since he would not have to manually navigate a sequence of atomic flips to

achieve a nonatomic flip. On the other hand, this method might increase the cognitive bur-

den on the user instead of decreasing it. IfDruid’s arbitrary result did not match the user’s

intent, then he would have to correctDruid’s mistake. It is not clear how such corrections

would be made since such corrections might not lead to the desired result. Without devis-

ing a method for the user to specify corrections to an incorrect nonatomic flip, this method

cannot be used. The next method expands on this method in such a way that it becomes

possible.

A second possibility is forDruid to choose arbitrarily, but to do so subject to a set

of user-specified constraints. This method would require a new user-interaction in which

the user constrains some equivalence classes to remain in their current state so that they

162

Chapter 12. Equivalence Class Independence

cannot be flipped during a nonatomic flip. Initially the user would attempt a nonatomic flip

without any constraints,i.e., by using the first method described above. IfDruid’s arbitrary

choice did not correspond to the user’s intent, he would then undo the flip, reverting to the

previous labeling, constrain some equivalence classes to their current state, and try the flip

again.

The third method listed above for handling nonatomic flips, showing all possible solu-

tions and letting the user choose his preferred result, presents the wrong affordances (see

Section 2.2). We believe thatDruid should present a legal labeling of a 21/2D scene to

the user, not a list of options from which to select. However, this method could be used

to remedy the problem that the potential ambiguity of nonatomic flips poses. A more se-

rious problem with this method is that there is no obvious bound on the number of legal

labelings that might result from a nonatomic flip. In most cases, there will probably be rel-

atively few options. However, there is no guarantee thatDruid would not have to present

a large number of legal labelings from which the user would be required to choose.

Due to the ambiguity of nonatomic flips and the potentially large number of possible

solutions that might result,Druid currently does not permit nonatomic flips. Instead, it

forces the user to perform a series of atomic flips. For this reason, in the remainder of this

discussion, references to an equivalence class flip will assume that the flip in question is

atomic.

163

Chapter 13

Exploiting Crossing-State Equivalence

Classes

In Chapters 10, 11, and 12 we described a topological property of 21/2D scenes called the

crossing-state equivalence class rule, we described howDruid finds equivalence classes,

and we showed that equivalence classes are not always independent and how equivalence

class interdependence affectsDruid’s handling of equivalence class flip interaction. What

remains to be explained about equivalence classes is precisely howDruid exploits them to

improve its performance. In this chapter we describe howDruid actually exploits equiv-

alence classes to greatly reduce the search space size in some cases and to obviate the

need to search in other cases. Later in this chapter we present experimental results which

demonstrate the improved performance that is gained by using equivalence classes for

relabeling.

This chapter represents the culmination of our work on crossing-state equivalence

classes. Equivalence classes represent a significant portion of our work because they em-

body a previously unrealized topological property of 21/2D scenes. As such, their dis-

covery contributes not only toDruid’s performance, but to a greater understanding of

164

Chapter 13. Exploiting Crossing-State Equivalence Classes

the topology of scenes of surfaces and the relationships of surfaces to one another in the

world. Not only are they applicable to a drawing program such asDruid, they may very

well have applications to the field of computer vision, in which they could be incorporated

into systems that attempt to intelligently interpret and understand visual scenes.

13.1 Applying Crossing-State Equivalence Classes to the

Labeling Search

In Section 10.1, we described two labeling tasks: 1) labeling (a tree search of the space

of possible labelings); and 2) relabeling (a transformation from one legal labeling to an-

other following a crossing-flip). Relabeling can be accomplished without a search, as

described later in Section 13.2. Labeling, however, requires a search for a new legal la-

beling. Crossing-state equivalence classes can be of great use when performing the tree

search. However, they can only be partially applied to the search process. Since the method

for finding crossing-state equivalence classes requires that the labeling be currently legally

labeled, it is impossible to use equivalence classes to assist in the initial labeling of un-

labeled elements of a figure. However, once a figure is legally labeled, we can find the

crossing-state equivalence classes for the entire figure and use them to reduce the search

space during subsequent labeling searches.

Consider the effect that crossing-state equivalence classes have on the search space.

In Section 5.2, we showed that the naive search space has a size of 2C for a drawing with

C crossings. Equivalence classes can theoretically reduce the search space from 2C to 2E

for a drawing withE equivalence classes, although the full reduction is often not possible,

as explained below. 2E represents a significant reduction in the search space because

there are always far fewer equivalence classes in a drawing than there are crossings.E

can be at most sizeC/2 since equivalence classes always come in even sizes and thus

165

Chapter 13. Exploiting Crossing-State Equivalence Classes

have a minimum size of two. Consequently, even in the worst case 2E = 2C/2. Notice

that this gain often cannot be entirely realized becauseDruid might not have complete

knowledge of the equivalence class structure for all of the crossings prior to the search,

in which case the search space will be a combination of equivalence class states for those

crossings for which equivalence classes are currently known and individual crossing-states

for the remaining crossings. However, in practice, even a partial application of equivalence

classes can have a dramatic effect on the search space size. Once the search is complete

and a legal labeling is found, equivalence classes can be found for all crossings in the

drawing, and thus, can be applied to future labeling searches.

The drawing shown in Fig. 13.2 contains forty crossings. Thus, the search space for

Druid (SEARCH) has size 240. Druid (CSEC SEARCH) exploits the fact that there are only

seven equivalence classes in the figure. Thus, it can theoretically search a space of size 27,

although as stated, the space may be somewhat larger depending on which elements of the

drawing have not yet been labeled in any given situation.

The reduction in the search space is accomplished by virtue of the fact that the equiva-

lence classes make explicit the same information that constraint-propagation would other-

wise implicitly deduce. A node in the search can be expanded in one of two ways: either

the corresponding crossing’s state is maintained or it is flipped. If the crossing-state is

maintained during the node’s expansion, then that crossing and all members of the associ-

ated equivalence class are locked to their current state so that they cannot be flipped during

the search of the subtree under that node. Alternatively, if the crossing-state is flipped dur-

ing the node’s expansion, then all other members of the associated equivalence class are

immediately flipped as well, and all members are similarly locked to the new state. In this

way, the crossing-state equivalence class rule is maintained at all times during the search.

166

Chapter 13. Exploiting Crossing-State Equivalence Classes

13.2 Relabeling Without Search

In Chapter 12, we showed that the crossing-states of the new labeling following an atomic

flip are uniquely determined, and thus no search is necessary for the crossing-states. It

might seem necessary to perform a search to find the new boundary segment depths for

the labeled knot-diagram, but with two basic assumptions, boundary segment depths can

be deduced directly from the crossing-states. The first assumption is that the labeled knot-

diagram isnormalized, i.e., that the depth of the shallowest boundary segment in the en-

tire drawing is zero. The second assumption is that the labeled knot-diagram isvertically

compact, i.e., that the drawing is compacted in the depth dimension as much as the con-

straints of the labeling scheme will allow. With these two assumptions, the crossing-states

uniquely determine the boundary segment depths.

It is preferable to confine the relabeling of boundary segment depths to an area lo-

cal to the flipped equivalence class when the user flips a crossing because such behavior

will scale better with the complexity of the drawing than relabeling all boundary seg-

ment depths in the drawing. Thus,Druid (DIRECT) propagates depth-changes through the

knot-diagram away from the flipped crossings rather than globally relabeling all boundary

segment depths.

We recall, based on Fig. 5.5, that a crossing always has two potentially occluded seg-

ments and two unoccluded segments. When a crossing is flipped, the depths of its two

potentially occluded segments will always change and the depths of its two unoccluded

segments will never change (see Fig. 13.1). Since the depths of the unoccluded segments

do not change, the new depths for the potentially occluded segments can be deduced di-

rectly by applying the labeling scheme to the flipped crossing-state and the two unoc-

cluded boundary segment depths. After deducing the new depth for a boundary segment,

that boundary segment’s depth is fixed and cannot be changed again during the propaga-

tion process. We say that such a boundary segment isdepth-constrained. This constraint

167

Chapter 13. Exploiting Crossing-State Equivalence Classes

guarantees that the depth propagation process always converges.

x

x x + 1

x

y y + 1 y y

Figure 13.1: When a crossing is flipped,e.g., transforming from the state shown at left to the state
shown at right, the depths of its two potentially occluded segments will always change (large bold
text) and the depths of its two unoccluded segments will never change (small plain text).

Druid (DIRECT)’s relabeling method processes crossings in a FIFO1 queue. This

queue is initially seeded with all crossings in the flipped equivalence class. For each cross-

ing in the queue,Druid assigns new boundary segment depths to some of its four boundary

segments in order to make the crossing legal. When members of the equivalence class are

retrieved from the queue, new boundary segment depths are always assigned to the poten-

tially occluded segments and never to the unoccluded segments, as described above. When

crossings are retrieved from the queue that are not a member of the equivalence class, their

boundary segment depths must be reassigned in a uniquely determined fashion that makes

the crossing legal.

When the relabeling process assigns a new depth to a boundary segment, the propaga-

tion process must propagate across that boundary segment to the next crossing. Thus, the

next crossing is added to the queue. The effect of processing the propagation in a FIFO

queue is that changes occur near all members of the equivalence class equally early in the

propagation process and then expand outward from crossings in the equivalence class.

1“first in, first out”

168

Chapter 13. Exploiting Crossing-State Equivalence Classes

As the propagation traverses boundaries and reaches new crossings, some of the four

boundary segments incident at those crossings will be depth-constrained, as described

above. The one exception to this rule will be the members of the equivalence class. The

propagation process did not add them to the queue. Instead, they were directly inserted

into the queue as a result of the equivalence class flip. Therefore, they will not have any

depth-constrained boundary segments. However, as described above, their new bound-

ary segment depths will be uniquely determined. For all other crossings, the effect of the

propagation process is that at least one boundary segment will be depth-constrained. The

unconstrained depths of a crossing that the propagation process reaches are uniquely de-

duced by applying the labeling scheme to the crossing’s state and the depth-constrained

boundary segment depths.

If at any time the propagation process reaches a crossing that cannot be legally rela-

beled within the confines of its depth constraints, the propagation process must be aban-

doned and the user’s desired flip cannot be performed. Such a situation corresponds to

an attempted nonatomic flip since continuing the propagation process would require that

crossings which are not members of the user-flipped equivalence class be flipped.

In Chapter 12 we described a possible alternative method thatDruid could use to im-

plement a nonatomic flip,i.e., it could automatically flip other equivalence classes to find

an arbitrary labeling consistent with the user-specified flip. The dependence between some

equivalence classes specifies which equivalence classesDruid should consider flipping in

order to complete the nonatomic flip. We can be confident that the user’s intent does not

require flipping other equivalence classes that are independent of the equivalence class

they clicked on. However, equivalence classes that are dependent on the clicked equiv-

alence class might require flipping. Thus,Druid could enumerate the space of possible

equivalence class instantiations for the set of dependent equivalence classes, attempting

the boundary segment depth propagation for each instantiation. The enumeration would

be terminated when an instantiation that can be labeled is found. If the iteration were

169

Chapter 13. Exploiting Crossing-State Equivalence Classes

ordered such that instantiations that flip the fewest number of equivalence classes were

attempted first, then the first solution found would be a minimum-difference labeling, and

thus would be a preferable solution to the search for reasons we described at the beginning

of Chapter 5.

Since the solution of the proposed method of performing nonatomic flips is relatively

arbitrary, it could produce a result that does not match the user’s intent. Thus,Druid

(DIRECT) does not work this way. Instead, it requires the user to perform a series of

atomic flips. Further research is required to decide which method is ultimately the best to

use.

13.3 Performance of the Direct Crossing-State Equiva-

lence Class Flip

13.3.1 Example Performance

The following experiments demonstrate the improvements gained byDruid (CSEC

SEARCH) andDruid (DIRECT) overDruid (SEARCH). Bear in mind, however, thatDruid

(CSEC SEARCH) is not used for crossing-flips in practice sinceDruid (DIRECT) generally

performs the best. We have only provided data forDruid (CSEC SEARCH) to help to illus-

trate its effectiveness overDruid (SEARCH). We testedDruid’s performance under three

circumstances:

• Flipping a small equivalence class on a simple figure

• Flipping a large equivalence class on a simple figure

• Flipping a small equivalence class on a complex figure.

170

Chapter 13. Exploiting Crossing-State Equivalence Classes

Flipping a Small Equivalence Class on a Simple Figure

Fig. 13.2 shows a drawing of low complexity before an equivalence class flip is performed

(top) and after two different equivalence classes have been flipped (bottom left and bottom

right). The equivalence class that has been flipped in each case is marked with circles.

The flip at bottom left involves a fairly small equivalence class, consisting of only four

crossings, while the flip at bottom right involves a fairly large equivalence class, consisting

of sixteen crossings. Tests were performed on a 1.6 GHz G5 PowerMac with labeling

searches terminated after 120s if no solution was found. The plot in Fig. 13.3 shows the

running times required to perform the flip illustrated in Fig. 13.2 (bottom left) for each of

the three methods (Druid (SEARCH), Druid (CSEC SEARCH), andDruid (DIRECT)). The

plot in Fig. 13.4 shows the running times required for each method to perform the flip

illustrated in Fig. 13.2 (bottom right). Searches in which no solution was found are not

included in the plots.

We observe thatDruid (DIRECT) performs well for both of the flips that were attempted

on this drawing, producing search times of approximately 0.003s. Note that when flipping

the large equivalence class,Druid (SEARCH) fails to find a solution within 120s in fifty

percent of trials. We observe that the benefit of exploiting equivalence classes is signifi-

cantly greater for large equivalence classes. For example, the mean running time plot in

Fig. 13.4 shows thatDruid (DIRECT) is almost 1000 times faster thanDruid (SEARCH) for

the flip shown in the bottom right of Fig. 13.2. Alternatively, the mean running time plot in

Fig. 13.3 shows thatDruid (DIRECT) is only eighty-five times faster thanDruid (DIRECT)

for the flip shown in the bottom left. The equivalence class in the second flip contains only

four times as many crossings as the equivalence class in the first flip (sixteen crossings vs.

four crossings), yet the benefit of exploiting equivalence classes in the second flip is eleven

times greater than in the first flip. Thus, the benefit of exploiting equivalence classes scales

faster than linear in the size of the equivalence classes.

171

Chapter 13. Exploiting Crossing-State Equivalence Classes

Figure 13.2: These figures show two equivalence class flips of two different equivalence classes
applied to the same drawing. The original drawing is shown at top. The results of performing two
different equivalence class flips are shown at bottom with the members of the flipped equivalence
class marked with circles. In the bottom left figure, a fairly small equivalence class has been
flipped. The equivalence class for the flipped shared superegion has four crossings. In the bottom
right figure, a fairly large equivalence class has been flipped. The running time tests discussed in the
text demonstrate that the benefit of exploiting equivalence classes is greater for larger equivalence
classes.

172

Chapter 13. Exploiting Crossing-State Equivalence Classes

Relabeling Method

0

0.05

0.1

0.15

0.2

0.25

Ti
m

e
(s

)

Left - Min
Center - Mean
Right - Max

Druid (SEARCH) Druid (DIRECT)

.159

.002

.035

Druid (CSEC SEARCH)

Figure 13.3: Running times for the three relabeling methods applied to the flip shown in Fig. 13.2
(bottom left).

173

Chapter 13. Exploiting Crossing-State Equivalence Classes

Relabeling Method

0

1

2

3

4

5

Ti
m

e
(s

)

Left - Min
Center - Mean
Right - Max

Druid (SEARCH) Druid (DIRECT)

3.07

.003

Druid (CSEC SEARCH)

.049

Figure 13.4: Running times for the three relabeling methods applied to the second flip shown in
Fig. 13.2 (bottom right).

174

Chapter 13. Exploiting Crossing-State Equivalence Classes

Flipping a Small Equivalence Class on a Complex Figure

Fig. 13.5 shows a drawing with many topologically identical equivalence classes,i.e.,

many equivalence classes represent features that occur in multiple places in the drawing.

One set of eight such equivalence classes is marked with circles in the right figure. The

tests were performed by flipping each of the eight marked equivalence classes separately

on the left figure and the resulting data was merged.

Figure 13.5: These figures show a drawing before (left) and after (right) a set of eight topologically
identical equivalence class have been flipped, marked with circles. The plot shown in Fig. 13.6
represents a merge of the result of applying each of these flips separately to the left figure.

The plot shown in Fig. 13.6 shows the benefit of exploiting equivalence classes on the

drawing shown in Fig. 13.5. We observe thatDruid (SEARCH) does not exhibit acceptable

turnaround times. In contrast,Druid (DIRECT) performed quite well with mean turnaround

times about 1900 times faster thanDruid (SEARCH). Note thatDruid (SEARCH) failed to

find a solution within 120s in two percent of trials.

175

Chapter 13. Exploiting Crossing-State Equivalence Classes

Relabeling Method

0

20

40

60

80
Ti

m
e

(s
)

Left - Min
Center - Mean
Right - Max

Druid (SEARCH) Druid (DIRECT)

35.6

.018
Druid (CSEC SEARCH)

.829

Figure 13.6: Running times for the three relabeling methods applied to the flips shown in Fig. 13.5.
The data across all eight possible flips have been merged in this plot.

13.3.2 Performance Relative to Drawing Complexity

The experiment presented in this section illustrates the benefit ofDruid (DIRECT) over

Druid (SEARCH) relative to drawing complexity. SinceDruid (DIRECT) consistently out-

performs bothDruid (SEARCH) andDruid (CSEC SEARCH), it is used whenever possible,

i.e., following a crossing-flip interaction. In order to measure the performance relative to

drawing complexity, we used the same set of drawings shown in Fig. 11.2. At each step,

a flip of the single equivalence class in the figure was performed and its running time was

measured relative to the complexity of the drawing. Figs. 13.7, 13.8, 13.9 show plots of

the flip time relative to the equivalence class size for this experiment.

Based on the plots shown in Figs. 13.7 and 13.8, we observe thatDruid (SEARCH)

176

Chapter 13. Exploiting Crossing-State Equivalence Classes

performs exponentially in the size of the equivalence class. Based on the plot shown in

Fig. 13.9 we observe thatDruid (DIRECT) performs exponentially in the size of the equiv-

alence class as well. However,Druid (DIRECT)’s performance scales much better than

Druid (SEARCH)’s, as the plot shown in Fig. 13.7 demonstrates. Most importantly,Druid

(DIRECT) produces very fast actual turnaround times. It relabels a flip of an equivalence

class that contains fifty-two crossings in .03s.

10 20 30 40 50
Flipped CSEC size (also total number of crossings)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Druid (SEARCH)
Druid (DIRECT)

Figure 13.7: Crossing-State Equivalence Class Flip Time vs. Class Size. We observe thatDruid
(SEARCH) performs worse than linear relative to the equivalence class size. The performance of
Druid (DIRECT) is difficult to analyze on this plot. Figs. 13.8 and 13.9 more precisely characterize
the performance of each relabeling method. Errors bars show 95% confidence interval.

177

Chapter 13. Exploiting Crossing-State Equivalence Classes

5 10 15 20
Flipped CSEC size (also total number of crossings)

0

20

40

60

80

100

120

Ti
m

e
(s

)

0 5 10 15 20

0.01
0.1

1
10

100

Figure 13.8: Crossing-State Equivalence Class Flip Time vs. Class Size forDruid (SEARCH). The
inset plot shows the same data plotted with a logarithmic y-axis. We observe thatDruid (SEARCH)
relabels the crossing-flips in this experiment exponentially in the size of the equivalence class.

178

Chapter 13. Exploiting Crossing-State Equivalence Classes

10 20 30 40 50
Flipped CSEC size (also total number of crossings)

0.002

0.004

0.006

0.008

0.01

Ti
m

e
(s

)

0 10 20 30 40 50

0.001

0.01

Figure 13.9: Crossing-State Equivalence Class Flip Time vs. Class Size forDruid (DIRECT).
The inset plot shows the same data plotted with a logarithmic y-axis. We observe thatDruid
(DIRECT) relabels the crossing-flips in this experiment exponentially in the size of the equivalence
class. However, Fig. 13.7 shows thatDruid (DIRECT)’s performance scales much better than
Druid (SEARCH)’s performance and produces actual turnaround times that are well within our
requirements for smooth performance. This plot demonstrates thatDruid (DIRECT) is capable of
relabeling a crossing-flip for an equivalence class of size fifty-two in .03s.

179

Chapter 14

Future Work

This document has presented the essential components of a new kind of drawing program

calledDruid. This program uses a representation called a labeled knot-diagram which

naturally represents interwoven surfaces. In addition to developingDruid’s representa-

tion, this document has described howDruid automatically maintains a legal labeling by

searching through the space of possible labelings for a given figure. Finally, it has de-

scribed a property of 21/2D scenes called the crossing-state equivalence class rule which

can be exploited to vastly improveDruid’s performance. This concluded the description

of Druid’s representation and its core functionality.

The current version ofDruid, i.e., the version described up to this point, is a completed

application. No features required forDruid to represent and manipulate 21/2D scenes were

omitted. However, there are a number of interesting directions in which this work could

be extended. In this chapter we discuss three areas of possible future work:

• Labeling with crossing-state equivalence classes

• Locking crossings and kinematic interactions

• Occluding contours

180

Chapter 14. Future Work

14.1 Labeling with Crossing-State Equivalence Classes

In Section 13.1 we explained howDruid currently exploits crossing-state equivalence

classes during the labeling search. Because equivalence classes can only be found on a

legally labeled figure,Druid cannot use those equivalence classes to label the figure ini-

tially. At any given time,Druid knows the equivalence classes that were present in the

drawing at the conclusion of the last labeling search but does not have knowledge of any

equivalence classes created as a result of subsequent topological changes. However, even

making limited use of equivalence classes during the labeling search is highly beneficial

because doing so significantly reduces the size of the search space. The necessity of having

a legal labeling before equivalence classes can be found can be problematic. For example,

there are drawings for which the user must construct a complex configuration of surface

boundaries which cannot be incrementally labeled because no intermediate configurations

leading up to the goal configuration are legal. Consequently,Druid must label the final

drawing without having any knowledge of the equivalence classes in advance. Fig. 13.5

shows such a drawing. This drawing consists of several boundaries including a pair of

boundaries defining the blue band and a pair defining the gray band. Until these bound-

aries are placed in their final positions, the drawing cannot be legally labeled. Therefore,

Druid must label the entire drawing without any knowledge of equivalence classes. Such a

search can be prohibitively expensive because the search space may be very large. IfDruid

could find equivalence classes on an unlabeled figure, then it could fully apply equivalence

classes to the labeling search, thus vastly decreasing the complexity of the search.

In Section 10.2.2 we described how holeless scenes can be converted into simple

scenes by introducing cuts to split self-overlapping surfaces into sets of abutting nonself-

overlapping surfaces. While this method of converting holeless scenes to simple scenes

is valid in principal, we have yet to devise a practical method for finding the correct cuts

to accomplish this transformation. A crucial step toward in design of a system which can

find equivalence classes on an unlabeled figure is devising a method for finding the cuts

181

Chapter 14. Future Work

which will convert a holeless scene into a simple scene. Our preliminary research on this

conversion process suggests that such cuts might have to follow a curved path, whereas the

cuts discussed previously in this document have been exclusively straight. Once a scene is

simple, finding the equivalence classes is a fairly trivial matter.

14.2 Locking Crossings and Kinematic Interactions

Fig. 14.1 (top) shows a drawing of a clockwise boundary and a counter-clockwise bound-

ary that have been grouped together into an annulus. The user can alter this drawing so

that the two boundaries no longer bound the same surface (Fig. 14.1, bottom left). When

the user attempts such a reshape, there are two behaviors thatDruid could exhibit. The

simpler behavior is to permit the interaction to continue, thus adding two new crossings,

and attempting to find a new labeling in which the two boundaries no longer bound the

same surface. An alternative behavior wouldlock the user’s drag at the point where the

two boundaries come into contact, thus preventing the two boundaries from being broken

into two separate surfaces (Fig. 14.1, bottom right). Notice that either behavior might ac-

tually represent the user’s intent. Furthermore, it is difficult to determine which behavior

is actually desired in any given situation.

A second potential locking situation occurs when two different surfaces that are cur-

rently interlocked through holes or hooks (Fig. 14.2, top) are dragged past their interlock-

ing position (Fig. 14.2, bottom left).Druid currently permits such interactions to occur

and finds a new labeling for the resulting figure. Alternatively, the drag interaction could

lock just prior to the point where the current labeling can no longer be maintained (Fig.

14.2, bottom right). There are at least two waysDruid could handle locked interlocking

surfaces. The first way is for the drag to simply halt at the locked position. A second pos-

sibility is to treatDruid’s idealized surfaces like physical surfaces subject to forces which

propagate along kinematic chains formed by points of contact.

182

Chapter 14. Future Work

Figure 14.1: When two boundaries that currently bound the same surface (top) are altered so that
they can longer bound the same surface (bottom left),Druid could lock the interaction at the point
where the associated topological change occurs (bottom right), thus preserving the current labeling
and the topology of the figure.

183

Chapter 14. Future Work

Figure 14.2: When two surfaces that are currently interlocked through holes (top) are altered so
that they can longer maintain their interlocked configuration (bottom left),Druid could lock the
interaction at the point where the associated topological change occurs (bottom right), thus pre-
serving the current labeling and the topology of the figure. After the lock occurs,Druid could
treat its idealized surfaces like physical surfaces subject to forces which propagate along kinematic
chains formed by points of contact.

184

Chapter 14. Future Work

14.3 Occluding Contours

In the labeling scheme currently used byDruid, contours always indicate surface bound-

aries. This is the only type of contourDruid allows because we have assumed that 21/2D

scenes represent embeddings of surfaces inR3 which project ontoR2 without singular-

ity.1 For this reason, all surfaces have been assumed to be effectively fronto-planar,i.e.,

all normals of all surfaces are parallel to the viewing direction everywhere. If we permit

curved surfaces, then surface normals can be oriented in arbitrary directions. The locus

of points where surface normals are orthogonal to the viewing direction,i.e., those points

where tangent planes of the surfaces are viewed edge-on, form a new kind of contour (Fig.

14.3). This new kind of contour, called anoccluding contour, is discussed in [20], [24],

and [45]. Occluding contours have a sign of occlusion similar to that of ordinary bound-

aries which indicates which side of the occluding contour the surface resides on. However,

in the case of an occluding contour, the surface resides at two distinct depths with respect

to thecontour generator(or limb).

Figure 14.3: Anoccluding contourrepresents a locus of points where the surface normal is orthog-
onal to the viewing direction,i.e., the tangent plane of the surface is viewed edge-on. Occluding
contours have a sign of occlusion which designates which side of the boundary the surface lies on.
Occluding contours are denoted with a double arrow that designates a curved surface to the right
with respect to a traversal along the thecontour generator(or limb).

GeneralizingDruid’s labeling scheme to include occluding contours would allow users

1A point in a projection of a surface embedded inR3 to its image inR2 is asingularity if two
points from the same surface neighborhood project to a single point in the image.

185

Chapter 14. Future Work

of Druid to construct drawings representing a more general class of surfaces,e.g., the

drawing in Fig. 14.3 or a cylinder (Fig. 14.4, left). Additionally, occluding contours would

permit the construction of scenes containing nonorientable surfaces,e.g., the Mobius strip

(Fig. 14.4, right).

Figure 14.4: The inclusion of occluding contours in a labeling allows the construction of previously
unrealizable scenes, such as cylinders (left). In addition, they allow the construction of scenes
containing nonorientable surfaces such as the Mobius strip (right).

Occluding contours would also make possible construction of surfaces without bound-

ary,i.e., surfaces which themselves form the boundaries of three-dimensional solid objects,

i.e., three-manifolds with boundary. Consider a surface whose exterior contour consists of

a single occluding contour of clockwise orientation. We call the surface defined by this

contour acontainer(Fig. 14.5,a). A container can be a two-manifoldwithoutboundary

(as shown ina). In contrast,Druid (to this point) has been restricted to two-manifoldswith

boundary. Other surfaces in the drawing can be assigned a depth that places them beneath

186

Chapter 14. Future Work

the top layer of the container but above the lower layer of the container. Such surfaces

would be inside the container (Fig. 14.5,b). If a hole were placed in the top layer of

the container,Druid would reveal the surfaces contained within it (Fig. 14.5,c). Note that

once a hole has been placed in a container it is no longer a two-manifold without boundary,

it has become a two-manifoldwith boundary. For this reason, a container is not defined

as a surface which is a two-manifold without boundary, but rather is defined as a surface

whose exterior contour is a clockwise occluding contour. Containment can be ambiguous

however. If the hole in the upper layer of the container (Fig. 14.5,c) were enlarged enough

to surround one of the contained surfaces, it would be ambiguous whether the contained

surface still resides inside the container or resides above it (d).

Adding occluding contours and containers toDruid raises a host of interesting ques-

tions. So far, boundaries have only been considered part of a group if a legal cut can con-

nect them, thus designating that they bound a single surface.Druid treats these grouped

boundaries in a consistent way,i.e., when the user drags one boundary of a surface across

the canvas,Druid automatically drags all other boundaries that are part of the same surface

so that the surface does not change shape. If a container contains other surfaces, it is an

open question or design issue whether the best behavior is to drag the contained surfaces

together with the container which contains them. If the contained surfaces are not dragged

with their container, then one possibility is for them to stay still until they collide with the

occluding contour defining the posterior edge of the container. This collision would be

similar to the simulation of the kinematic chain of interlocking annuli described in Sec-

tion 14.2. Following this collision, the interior surfaces would be dragged along with the

container, such that contained surfaces would tend to pile up along the posterior edge of

the dragged container. An alternative (and quite likely preferable) behavior would require

contained surfaces to always move as a unit within their container. This would preserve

the relative positions of the surfaces in the drawing. However, this behavior would be sen-

sitive to ambiguous situations such as the one described above (Fig. 14.5,d), in which it

is ambiguous whether a surface is contained within a container that has had a hole cut in

187

Chapter 14. Future Work

it.

(a) (b)

(c) (d)

Figure 14.5: A surface defined by an exterior occluding contour is acontainer(a). Containers can
contain other surfaces if those surfaces reside at a depth deeper than the upper layer of the container
but shallower than the lower layer of the container (b). By placing holes in the upper layer, the user
can view the contained surfaces (c). Containment can be ambiguous, however. This ambiguity is
illustrated in (d), in which the smallest surface may reside within the container or may reside above
it.

Another possible source of ambiguity is determining which boundaries and occluding

contours belong to the same surface. Consider Fig. 14.5 (b, c, andd). Previously we

described these figures as a container which contains two disks. Inc andd a hole is cut

in the top surface of the container. Another interpretation of these figures would perceive

either of the clockwise boundaries,e.g., the smallest boundary in the figure, not as a disk

contained within the container, but instead as a hole in thebacksurface of the container.

188

Chapter 14. Future Work

Note that when a hole is placed in the back of a container it has a clockwise sign of

occlusion whereas to this point holes have always been defined by a counter-clockwise

sign of occlusion. Given an interpretation in which the smallest boundary is a hole in the

back of the container, (c) and (d) represent figures in which a container has two holes in

it, one partially (c) or completely (d) surrounding the other, thus permitting the viewer to

view all the way through the container (like looking through a beach ball that has two holes

cut into its opposite sides). To resolve this ambiguity we believe that an approach similar

to cuts might be useful, in which various boundaries and occluding contours that belong

to the same surface are connected to one another in some way. However, it is unclear

precisely how such a system would work.

One important observation is that occluding contours can also represent creased sur-

faces rather than curved surfaces (see Fig. 14.6). With respect to a curved surface, the

surface normal changes continuously and the occluding contour represents the locus of

points where the tangent plane of the surface is viewed edge-on. However, in the case of

a crease, the occluding contour represents the locus of points where the component of the

surface normal in the viewing direction changes sign discontinuously. The contour gener-

ator represents a discontinuity in surface orientation,i.e., the tangent plane is undefined.

While these two types of occluding contours are distinct with respect to surfaces embedded

in R3, they are topologically identical with respect to the projections of surfaces embedded

in R3 ontoR2, i.e., they are topologically identical with respect to 21/2D drawings. Indeed,

in thepaneling constructiondescribed in [45], occluding contours resulting from curved

surfaces are converted into creases while maintaining the overall topology.

The inclusion of occluding contours requires a fairly elaborate extension to the basic

labeling scheme (Fig. 14.7) which includes many new crossing types in addition to those

already described (Figs. 4.2 and 8.2). As new kinds of contours are added to labeled knot-

diagrams, the combinatorial complexity of crossing types and their associated labeling

constraints grows quickly.

189

Chapter 14. Future Work

Figure 14.6: Anoccluding contourdoes not have to represent a curved surface, as shown in Fig.
14.3. It can also represent a crease, as shown above. While these two types of occluding contours
are distinct with respect to three-dimensional space, they are topologically identical with respect to
21/2D drawings.

This chapter has presented some topics of possible future work that could follow our

work onDruid. As research on 21/2D drawing progresses, drawing programs will likely

become more powerful and intelligent, and they will offer representations and user inter-

faces of increasing generality, sophistication, and naturalness.

190

Chapter 14. Future Work

y ≥ x y + 2

x

x

x + 1

x ≥ y

y y

x x + 1 xx + 1

x

x

y ≥ x y + 2

y y

x

x ≥ y

y ≥ x y + 2

x

x

x

x x

x

x x

x

x + 1 x

x

x + 1xa) Occluding contour
 Y-junctions

b) Occluding contour
 to boundary crossings

c) Occluding contour
 to cut crossings

d) Occluding contour to
 occluding contour crossing

e) Cusp V-junctions

Figure 14.7: Occluding contours require an elaborate extension to the basic labeling scheme. In
addition to the crossing types shown in Fig. 4.2 and Fig. 8.2, the extended labeling scheme must
also include the crossing types shown above.

191

Chapter 15

Conclusion

All drawing programs must have a way to distinguish which surface is on top anywhere

that two surfaces overlap. Existing drawing programs solve this problem by assigning

surfaces to distinct layers in depth. Consequently, interwoven sets of surfaces cannot be

represented, thus precluding a large class of potential drawings. Since drawings should be

able to depict any 21/2D scene, a drawing program should use a representation that permits

the construction of any 21/2D scene. Unfortunately, the assumption that most existing

drawing programs adopt is that surfaces reside in distinct layers. Since this assumption

is not true of the space of all possible 21/2D scenes, existing drawing programs cannot

represent all 21/2D scenes. We have developed an innovative new drawing program with

the following major capabilities:

• Naturally represents a more general class of drawings than other programs,i.e.,

drawings in which surfaces may interweave

• Provides user-interactions in the form of user specified constraints which are auto-

matically propagated throughout the drawing to maintain topological validity of the

representation.

192

Chapter 15. Conclusion

Specific contributions of this work are as follows:

• Use of labeled knot-diagrams as the basis for a more general drawing tool capable

of representing drawings of interwoven surfaces

• Development of a method for projection of the locations of crossings of surface

boundary components after move and reshape interactions

• Development of a relaxation method for determining depth ranges for boundary

segments in a labeled knot-diagram based representation

• Development of a branch-and-bound search method for efficiently finding

minimum-difference labelings with respect to the labeling preceding a user action

• Introduction of the notion of cuts for representing surfaces with multiple boundary

components and for reduction of the search space

• Introduction of the notion of slices for determining which surfaces contribute color

to each region of the canvas for the purpose of rendering

• Discovery of a topological property of 21/2D scenes which we call the crossing-state

equivalence class rule

• Development of a relabeling method which exploits the crossing-state equivalence

class rule to rapidly relabel a figure without a need for a labeling search.

Druid uses a novel surface representation which makes it possible to represent a more

general class of drawings than is possible with existing drawing programs.Druid uses

closed boundaries to represent surfaces. It only maintains local constraints on the ways in

which boundaries can cross one another. This local constraint does not impose a global

layering on the elements of the drawing and therefore permits the construction of scenes

of interwoven surfaces.

Additionally, Druid’s interface provides the natural affordances of 21/2D scenes in that

actions that the user performs are isomorphic to elemental transformations of 21/2D scenes.

UsingDruid is easy because it operates in a way which is consistent with a user’s intuition

193

Chapter 15. Conclusion

about real surfaces. Therefore, a user must learn relatively few new skills in order to start

usingDruid. Druid’s affordances minimize the effort required of the user and decrease the

time required to construct complex drawings.

194

Appendices

A Relationship to Depth Sort 196

B Description of Data Structures and Basic Organization 198

195

Appendix A

Relationship to Depth Sort

Depth sortis an algorithm commonly used to prepare for rendering in three-dimensional

graphics applications. Given a set of polygons embedded in three-dimensional space,

depth sort must assign an ordering to those polygons that reflects their relative positions

in the depth-dimension with respect to the user’s point of view. This depth-dimension

sorting is an important step in rendering a three-dimensional scene because most polygon

renderers use this ordering to subsequently prune occluded polygons,i.e., hidden surface

removal, and for rendering algorithms such as the painter’s algorithm (see Angel [3]),

which renders polygons in order from back to front so that shallower polygons are ren-

dered on top of deeper polygons. There is a problem with sorting polygons along the

depth-dimension however. In Section 10.2.2 we described a spectrum of drawing com-

plexities (see Fig. 10.3). Polygons embedded in three-dimensional space correspond to

simple scenes,i.e., they might contain cyclic relative depth relationships between sets of

polygons. The presence of a cyclic depth relation will prevent a partial ordering of the

surfaces. Therefore, depth sort converts simple scenes to layered scenes bysplitting some

polygons into multiple abutting polygons such that the relative depth relation of the result-

ing set of polygons conforms to a DAG.

196

Appendix A. Relationship to Depth Sort

Druid does not need to perform the conversion from simple scenes to layered scenes

and therefore does not need to utilize depth sort, because its representation is general

enough to accommodate cyclic depth relationships,i.e., Druid makes weaker assumptions

about the arrangement of sets of surfaces than three-dimensional rendering tools make,

such as the algorithms employed by graphics cards.Druid maintains a holeless repre-

sentation and does not convert to a more tightly constrained representation for any of its

methods. However, there exists a potential for great benefit in convertingDruid’s rep-

resentation to a layered scene. The benefit is thatDruid’s rendering process could be

implemented using a special purpose graphics card. This would free the primary CPU

for other processing andDruid’s performance might improve as a result. In our research,

we have not attempted this conversion however, as it is somewhat orthogonal to our main

research goal, the development ofDruid’s representation and the necessary methods for

constructing and manipulating instances of that representation.

197

Appendix B

Description of Data Structures and

Basic Organization

The purpose of this appendix is to more easily facilitateDruid’s reimplementation. While

this entire document suffices to describeDruid and the operations it performs, it may be

confusing how one should organize the data structures involved in a reimplementation of

Druid. This appendix describes the crucial data structures thatDruid operates on but does

not describe the operations that are performed on those data structures. Descriptions of the

operations whichDruid performs can be found in earlier chapters.

B.1 The Fundamental Drawing Program

A programmer who is knowledgeable in GUIs1 should be able to implement afundamental

drawing programthat can be expanded intoDruid. A fundamental drawing program is

one that presents a window to the user, detects and handles mouse events, interpolates

curves for visualization on the computer’s display, and otherwise generally permits the

1“graphical user interface”

198

Appendix B. Description of Data Structures and Basic Organization

construction of closed curves representing surface boundaries. We will assume that such a

fundamental drawing program can be easily implemented for further expansion toDruid.

In the next section we describe the data structures thatDruid uses represent a 21/2D scene.

B.2 The Crucial Data Structures

Druid uses the following data structures:

• drawing

• general boundary

– B-spline boundary

• surface

• cut

• cached cut

• general crossing

– boundary-to-boundary crossing

– boundary-to-cut crossing

– cut-to-cut crossing

– boundary-to-cut-T-junction crossing

• crossing-state equivalence class

• slice

• region

The data structure that contains all data describing a drawing is thedrawing structure,

which contains all of the boundaries, cuts, and crossings comprising a drawing. A draw-

ing also contains cached cuts (see Section 8.3.2), crossing-state equivalence classes, and

199

Appendix B. Description of Data Structures and Basic Organization

surfaces. The following is a basic description of the drawing structure (note that crossing-

state equivalence class is shortened to CSEC):

DRAWING

vector<General Boundary> boundaries

vector<Cut> cuts

vector<General Crossing> crossings

vector<Cached Cut> cachedCuts

vector<CSEC> csecs

vector<Surface> surfaces

Although a boundary mayrepresenta curve,Druid never uses a truly curved boundary.

Instead it uses a boundary defined by a polygon,i.e., a closed sequence of straight line

segments. If those line segments are small enough and numerous enough, the polygon can

reasonably approximate a curve.Druid uses straight line segments to define boundaries

because this vastly simplifies the problem of finding crossings. The boundary can be de-

fined in any way the programmer chooses,e.g., splines, ellipses, polygons, or freehand

drawn curves, but the underlying representation is still a polygon. It is important to distin-

guish between polygon segments and boundary segments. To simplify our exposition, we

usepolygon segmentto refer to the line segments defining a boundary andboundary seg-

mentto refer to a contiguous portion of a boundary between crossings. Since a boundary’s

polygon can be defined using many different methods, we first describe thegeneral bound-

ary structurewhich is independent of the method used to define the boundary’s polygon.

A general boundary contains a sequence of points indicating the corners of a polygon. A

general boundary also stores information about its boundary segments, namely each seg-

ment’s current depth index and maximum attainable depth. The maximum attainable depth

is necessary for segment depth enumeration (see Section 7.3). A general boundary also

stores the set of crossings that occur on the boundary, preferably sorted with respect to a

traversal of the boundary. Note that it is not necessary to explicitly store the boundary’s

200

Appendix B. Description of Data Structures and Basic Organization

sign of occlusion, which is determined by traversing the sequence of polygon corners in

order. To invert the sign of occlusion, the sequence of polygon corners is simply reversed.

The following is a basic description of the general boundary structure:

GENERAL BOUNDARY

vector<point> polygonCorners

vector<int> segmentDepths

vector<int> maxSegmentDepths

vector<General Crossing> crossings

Since we use B-splines to define boundaries, the specific boundary structureDruid uses

also includes a set of control points defining the B-splines that comprise a boundary. In an

object-oriented framework, specific boundary definitions can be derived from the general

boundary defined above. The following describes theB-spline boundary structure:

B-SPLINE BOUNDARY : DERIVED FROM GENERAL BOUNDARY

vector<point> controlPoints

A surface structurestores information about the multiple boundaries that bound a surface.

Therefore, a surface structure stores a set of related boundaries. Additionally, if a surface

is infinite, the surface structure stores the infinitely distant depths the surface resides at.

Note that it is possible for an infinite surface to reside at multiple infinite depths. Finally,

a surface stores a color and opacity that describe the surface’s appearance:

SURFACE

vector<General Boundary> boundaries

vector<int> infiniteDistanceDepths

real[3] RGB color

real opacity (between 0.0 and 1.0)

201

Appendix B. Description of Data Structures and Basic Organization

A cut structurestores information about the two boundaries joined by a cut. This informa-

tion includes which two boundaries are joined and the locations on those boundaries where

the cut attaches. For simplicity, cuts only attach to the midpoints of polygon segments, al-

though this limitation could be generalized in future implementations. Therefore, a cut’s

attachment point is easily indicated by the segment index to which it attaches. Cuts have

segments similar to boundary segments, and those segments have similar properties,i.e.,

a depth index and a maximum depth. The cut structure also stores a list of its crossings,

much like a boundary:

CUT

General Boundary startBoundary

General Boundary endBoundary

int startAttachmentPolygonSegment

int endAttachmentPolygonSegment

vector<int> segmentDepths

vector<int> maxSegmentDepths

vector<General Crossing> crossings

A data structure that is related to cuts is thecached cut structure(see Section 8.3.2).

A cached cut structure contains only the information necessary to construct a cut with

specific attachment points to a specific pair of boundaries. Other data incidental to a cut,

such as the cut’s segments and crossings, can be recalculated after the the cut has been

constructed:

CACHED CUT

General Boundary startBoundary

General Boundary endBoundary

int startAttachmentPolygonSegment

int endAttachmentPolygonSegment

202

Appendix B. Description of Data Structures and Basic Organization

A crossing stores information about the way in which pairs of boundaries, pairs of cuts,

or boundaries and cuts cross one another. It is important to realize that each crossing type

requires a unique data structure. We first describe ageneral cut structure, from which

the specific cut structures are derived. Notice that while a cut’s coordinate can always

be calculated when needed from the boundaries or cuts it involves, it is more efficient to

store the coordinate in the cut structure because it often needed for various operations,

e.g., defining the border of a region. A crossing’s state may beconstrainedduring the

search process, which indicates that the subsequent search is not permitted to flip the

crossing. Therefore, this constraint is stored in the crossing structure. Note that the T-

junction crossing makes no use of thestateor constrainedvariables in the general crossing

structure since T-junctions have only one possible state.

GENERAL CROSSING

Point location

bool state

bool constrained

BOUNDARY-TO-BOUNDARY CROSSING: DERIVED FROM GENERAL CROSSING

General Boundary boundary1

General Boundary boundary2

int polygonSegment1

int polygonSegment2

BOUNDARY-TO-CUT CROSSING: DERIVED FROM GENERAL CROSSING

General Boundary boundary

Cut cut

int polygonSegment (on boundary)

CUT-TO-CUT CROSSING: DERIVED FROM GENERAL CROSSING

203

Appendix B. Description of Data Structures and Basic Organization

Cut cut1

Cut cut2

BOUNDARY-TO-CUT-T-JUNCTION CROSSING: DERIVED FROM GENERAL CROSSING

General Boundary boundary

Cut cut

int polygonSegment (on boundary)

bool atCutStart (a crossing at the cut’s start or end?)

Thecrossing-state equivalence class structuredescribes a crossing-state equivalence class.

This information basically consists of a set of crossings comprising the equivalence class:

CSEC

vector<General Crossing> crossings

Slices are used during rendering. Theslice structureis similar to the cut structure, except

that it only stores an attachment to one boundary. The other end of the slice is located

somewhere in the interior of the bounded surface and is therefore stored as a coordinate:

SLICE

General Boundary boundary

int attachmentPolygonSegment

point sliceOrigin

vector<int> segmentDepths

vector<int> maxSegmentDepths

vector<General Crossing> crossings

One of the fundamental data structures used during rendering is theregion structure, which

describes a region (a polygon) of the canvas and the surfaces that cover it, sorted in order

204

Appendix B. Description of Data Structures and Basic Organization

by depth. Call the region in questionA. The region structure forA also contains a list

of other regions which are suspected to encloseA, and which must therefore be rendered

prior to renderingA in the rendering process (see Section 9.1.3). Likewise, a region has

a boolean which indicates whether it has been rendered yet. This boolean, say for region

A, is queried by other regions whose suspected enclosing regions lists containA. Finally,

a region stores the color assigned to it, as calculated using a color model applied to the

covering surfaces:

REGION

vector<point> polygonCorners

vector<Surface> coveringSurfaces (sorted by increasing depth)

vector<Region> suspectedEnclosingRegions

bool hasBeenRendered

real[3] RGB color

The data structures described in this appendix should be helpful in the design and reim-

plementation ofDruid. Descriptions of the various operations that are performed on these

data structures are described throughout this document,e.g., the labeling search (see Chap-

ter 7), calculating the depth ranges for the boundary segments (see Section 5.3), crossing-

projection (see Section 6.2.1), the cut search (see Section 8.3), the equivalence class search

(see Chapter 11), the direct crossing-flip (see Section 13.2), and rendering (see Chapter 9).

205

References

[1] Knots3D, c©2006 Abbott, S.
http://www.abbott.demon.co.uk/knots.html

[2] Adobe Illustrator,c©2006 Adobe.
http://www.adobe.com/

[3] Angel, E.Interactive Computer Graphics. Addison-Wesley, 2006.

[4] Apple Developer Connection (ADC) reference library
http://developer.apple.com/

[5] SymmetryWorks Adobe Illustrator plugin,c©2006 Artlandia.
http://artlandia.com/products/SymmetryWorks/

[6] Autodesk and Alias Maya,c©2006 Autodesk.
http://usa.autodesk.com

[7] Autodesk 3ds Max,c©2006 Autodesk.
http://usa.autodesk.com

[8] Barla, P., J. Thollot, and F. Sillion, Geometric clustering for line drawing
simplification,Siggraph Technical Sketch: SIGGRAPH 2005, ACM, 2005.

[9] Baudelaire, P., and M. Gangnet, Planar maps: An interaction paradigm for graphic
design,Proc. of CHI, 1989.

[10] Brody, B., and C. Hartman, BLUI, a body language user interface for 3d gestural
drawing, Report to Photonics West, 1999.
http://www.blui.org/papers/spiepaper.html

[11] Bungie’s 3D games, Myth I,c©1997 Bungie, and Myth II,c©2000 Bungie.
http://www.bungie.net/

206

References

[12] Clanbadge’s True Type fonts which represent square sections of a Celtic knotwork
pattern, c©Clanbadge 2006.
http://www.publishingperfection.com/clanbadge/

[13] Coreldraw graphics suite upgrade matrix, 2003.
http://www.corel.com/content/pdf/cdgs12/CDGSVersion to Versionmatrix.pdf

[14] Craig, D., LisaDraw 3.0 Manual, 1984.

[15] Cromwell, P. R. Celtic knotwork: Mathematical art,The Mathematical
Intelligencer, 15 (1), pp. 36-47, 1993.

[16] Gangnet, M., J-M. Thong, and J-D. Fekete. Automatic gap closing for freehand
drawing.Siggraph Technical Sketch: SIGGRAPH 1994, ACM, 1994.

[17] Gibson, J. J.,The ecological approach to visual perception, Houghton Mifflin Co.,
Boston, MA, 1979.

[18] Gleicher, M., Briar: A constraint-based drawing program,Proc. of CHI, 1992.

[19] Gleicher, M., and A. Witkin, Differential manipulation,Proc. of Graphics Interface,
Calgary, Alberta, pp. 61-67, 1991.

[20] Huffman, D. A., Impossible objects as nonsense sentences,Machine Intelligence, 6,
1971.

[21] ivtools team, idraw man page.
http://www.ivtools.org/ivtools/idraw-README.txt

[22] Kirousis, L. M., and C. H. Papadimitriou, The complexity of recognizing polyhedral
scenes,Journal of Computer and System Sciences, 37 (1) pp. 14-38, 1988.

[23] MacPowerUser team, iDraw 1.3.2 README, 2002. Available as part of the
downloadable iDraw package.
http://www.macpoweruser.com/downloads.html

[24] Malik, J., Interpreting line drawings of curved objects,International Journal of
Computer Vision, 1 (1), pp. 73-103, 1987.

[25] Marr, D.Vision: A computational investigation into the human representation and
processing of visual information, Henry Holt & Company, 1982.

[26] Marsland, T. A., and M. Campbell, Parallel search of strongly ordered game trees,
ACM Computing Surveys, 14 (4), pp. 533-551, 1982.

207

References

[27] McReynolds, T., and D. Blythe, Advanced Graphics Programming Techniques
Using OpenGL,Siggraph Course Notes: SIGGGRAPH 1998, ACM, 1998.

[28] McGrenere, J., and W. Ho, Affordances: Clarifying and evolving a concept,
Graphics Interface, pp. 179-186, May 2000.

[29] MetaCreations’s Bryce 2,c©1996 MetaCreations.
http://www.metacreations.com/products/

[30] Metelli, F., The perception of transparency,Scientific American, 230(4), pp. 90-98,
1974.

[31] Metelli, F., Stimulation and perception of transparency,Psychological Research, 47
(4), pp. 185-202, 1985.

[32] Myers, B. A., A brief history of human computer interaction technology,ACM
Interactions, 5 (2), pp. 44-54, 1998.

[33] Norman, D. A., Affordance, conventions, and design,Interactions, pp. 38-43, 1999.

[34] Norman, D. A.,The Design of Everyday Things, Basic Books, 2002.

[35] Raisamo, R., and K-J R̈aihä, Techniques for aligning objects in drawing programs,
Technical Report, University of Tampere, Department of Computer Science,
A-1996-5, 1996.

[36] Raisamo, R., and K-J R̈aihä, A new direct manipulation technique for aligning
objects in drawing programs,ACM Symposium on User Interface Software and
Technology, pp. 157-164, 1996.

[37] Raisamo, R., An alternative way of drawing,Proc. of CHI, 1999.

[38] Sato, T., and B. Smith, Xfig User Manual, 2002.
http://xfig.org/userman/

[39] Scharein, R. G.Interactive Topological Drawing. Ph.D. dissertation, University of
British Columbia, 1998.

[40] Sutherland, I. E., Sketchpad: A man-machine graphical communication system,
Proc. of the 1963 Spring Joint Computer Conference, AFIPS, 23pp. 329-346, 1963.

[41] Sutherland, I. E., Sketchpad: A man-machine graphical communication system,
Technical Report, Univ. of Cambridge, UCAM-CL-TR-574, Sept, 2003. (This
technical report is a modern republication of Sutherland’s 1963 doctoral
dissertation.)

208

References

[42] Voska, R., Real-Draw Manual, pp. 67-72, 2003.
http://www.mediachance.com/files/RealDrawPDF.zip

[43] Waltz, D. L., Understanding line drawings of scenes with shadows,The Psychology
of Computer Vision, McGraw-Hill, New York, pp. 19-92, 1975.

[44] Williams, L. R.,Perceptual completion of occluded surfaces, Ph.D. dissertation,
Univ. of Massachusetts at Amherst, Amherst, MA, 1994.

[45] Williams, L. R., Topological reconstruction of a smooth manifold-solid from its
occluding contour,International Journal of Computer Vision, 23 (1), pp. 93-108,
1997.

[46] Celtic Knot Thingy (CKT), c©2006 Zongker, D.
http://isotropic.org/uw/knot/

209

Index

21/2D scene, 2, 5,5, 52, 55, 159, 180,

185, 192

general, 142

holeless, 151

simple, 14, 138, 142, 151

affordances, 8, 9, 18,20, 193, 194

isomorphic, 8, 32, 55

area of interest, 77, 85

B-spline, 9, 19, 35, 62

boundary, 19, 24

connectedness

fully-connected, 110

partially-connected, 110

unconnected, 110

cuttable pair, 112

group, 107

segment, 38

depth index, 38,38, 44, 46

depth range, 48, 49

directed, 126

potentially occluded, 50, 146, 168

unoccluded, 50, 146, 168

traversal, 70,70, 130, 149, 151

segment depth enumeration, 72, 76

Celtic knotwork, 7

constraint-based interface, 9, 18, 23, 192

constraint-propagation, 69, 166

constraint-satisfaction, 69

container, 186, 188

containment, 186

crossing

neighbor, 145, 146

finding, 148

crossing neighbor, 146, 148

crossing-flip, 14, 19,35, 55, 61, 65, 68,

80, 168

crossing-projection, 11, 52, 56, 58–60,

193

crossing-state equivalence class, 13, 146,

165

finding, 145

finding for labeled figures, 147

flip, 159

atomic, 15, 156, 157, 159

210

Index

nonatomic, 15, 156, 157, 159, 161,

169

independence, 14, 15, 156, 157, 169

rule,143, 193

crossing-state equivalence class rule, 13,

137, 139, 180

cut, 12, 105, 106,107, 108–110, 142,

151, 187, 193

cached cut, 112, 113

cleanness, 106, 120

curved, 119

finding, 112

finite, 111

infinite, 111

legality, 110

legality testing, 114, 115

manual, 117

optimal, 118, 120

straight, 118

weaving, 116, 130, 149

cylinder, 186

depth complexity, 89

depth sort, 196

direct manipulation interface, 2, 9, 18,

20, 22,22, 48

directed acyclic graph (DAG), 3, 26, 27,

34, 38, 53, 157, 196

local manipulation, 30

Druid , 3, 9, 11,17, 18, 19, 21, 23,35, 38,

43, 53, 54, 123, 137, 139, 160,

180, 182,193, 198

Druid (SEARCH) , 139, 166

Druid (CSEC SEARCH) , 139, 166

Druid (DIRECT) , 139, 160, 162, 167, 193

edit-distance, 53

episcotister model, 127

Gauss-Seidel or Jacobi iteration, 50

hidden surface removal, 196

hole, 111, 187, 188

Illustrator (Adobe), 8

Jordon curve, 142

knot-diagram, 38, 39

labeled knot-diagram, 10, 34, 37,38, 39,

193

legal labeling, 39, 40, 42

normalization, 167

vertical compaction, 130, 167

labeling preserving interactions, 52, 55,

56

labeling scheme, 10, 37, 40, 41, 185

for boundaries,38

for cuts, 108, 109

for occluding contours, 189, 191

211

Index

relaxed, 43, 49, 50, 193

labeling search, 11, 12, 68,72, 145, 166

branch-and-bound, 74, 75, 193

good boundary traversal starting seg-

ments, 75, 76

iterative deepening, 75, 76, 78

minimum-difference search, 45, 72

search space, 42–45, 48, 165, 166

timeouts, 75, 79

labeling space, 10, 11, 46

labeling vs. relabeling, 139

layers, 1, 2,2, 3, 38, 192

minimum-difference labeling, 11, 43, 72,

74, 75, 137, 193

Mobius strip, 186

mouse handling

delayed response, 11, 53, 62, 63

minimum acceptable mouse dis-

tance, 12, 53, 65–67

NP-completeness, 89

occluding contour, 15, 180, 185, 190, 191

painter’s algorithm, 196

planarized graph, 8, 26, 28, 136

Real-Draw (MediaChance), 20, 26, 30,

34, 35, 53

push-back, 30

region, 13, 119, 123,123, 126,141, 193

enclosed, 133

suspected enclosing, 133

relaxed labeling problem, 49, 193

rendering, 35, 39, 105,122, 123, 124,

193

opaque, 124

transparent, 124, 127

scene labeling, 38

search space, 11, 12, 68

sign of occlusion, 19, 38

sign of occlusion flip, 55, 61

slice, 128,128, 193

slice origin, 128

weaving, 130, 133, 149

spoof, 26,26, 27, 35, 54

superregion, 141, 144

border, 141

shared superregion, 142, 145

corner, 142, 145

surface

creased, 189, 190

curved, 185, 189, 190

finite, 111

infinite, 111

interlocked pair, 182

interwoven pair, 3, 5, 7

structure, 106, 107

212

Index

three-dimensional modeling, 6

user interaction

kinematic, 15, 180, 182

locking, 15, 16, 180, 182, 187

user interactions requiring relabeling, 52,

55, 61

user interface, 8, 19, 20, 32, 44, 162, 193

visualization

labeled knot-diagram mode, 13, 122,

123

rendering mode, 13, 123

Waltz filtering, 69, 89

zero integration rule, 70

213

