
Druid

Representation of Interwoven
Surfaces in 2½D Drawing

Keith Wiley
Thesis advisor: Lance R. Williams

University of New Mexico

Department of Computer Science

Albuquerque, NM 87131 USA

Interwoven 2½D Scenes

Introduction
Existing drawing programs:

A

B C

D
E

F

F

E

D

B C

A

Use distinct layers

Impose a DAG

Do not permit
interwoven surfaces

Our program, Druid, does not
suffer from these limitations.

Existing Drawing Programs

Noninterwoven
layers

Boolean
combinations of
boundaries, i.e.,
holes.

Do not span the full space
of 2½D scenes.

Knots vs. Interwoven Surfaces

Interwoven Surfaces in
Conventional Drawing Programs

1. Spoofs

2. Painting planarized graphs,
e.g., Adobe Illustrator

3. Local DAG manipulation,
e.g., MediaChance Real-Draw

Spoofs
A layered arrangement that produces

the illusion of interwoven surfaces

(2) Paste
(1) Copy from right annulus

(3) Precisely position (4) The spoof is brittle. If either
annulus is moved, the spoof breaks.

Tedious to
construct

Tedious to
maintain

Adobe Illustrator Method

Convert
drawing to
planar graph

Paint faces of
the graph
independently

Insufficient for transparent surfaces

Cannot represent self-overlapping surfaces
(figure below)

MediaChance Real-Draw Pro-3

Push-back tool: The user
can push the top layer down
(figures left)

The right annulus is
pushed down

Affordances

Feasability is not the sole issue. Convenience and naturalness are
also issues.

Affordances: The set of interactions that a physical object suggests
for itself (Norman ‘02).

Unlike conventional drawing programs, Druid’s affordances are
isomorphic to those of idealized physical surfaces.

The user’s experience is of interacting with surfaces, not pictures
of surfaces.

Norman, D. A., The Design of Everyday Things, Basic Books, 2002.

Druid’s Representation
Knot-diagram:

A projection of closed curves indicating which
curve is above where two cross

Labeled knot-diagram (Williams ‘94):

Sign of occlusion for every boundary (arrows)
Depth index for every boundary segment

0

1

1

1

11

1

11
1

1

1

1

1
1

1
1

1

1
1

1

1

1

0

0

0

0

0

0

1

0

0

1

Williams, L. R., Perceptual Completion of Occluded Surfaces, PhD dissertation, Univ. of Massachusetts at Amherst, Amherst,
MA, 1994.

Labeling Scheme
Imposes local constraints on the four

boundary segment depths at a crossing

Legal labeling: A labeling in which every
crossing satisfies the labeling scheme
(Williams ‘94)

x, y: boundary
segment depths

Williams, L. R., Perceptual Completion of Occluded Surfaces, PhD dissertation, Univ. of Massachusetts at Amherst, Amherst,
MA, 1994.

Labeling Scheme Justification

Using Druid

The Crossing-Flip Interaction

Drawing Program Interactions

Create & delete boundaries

Reshape & drag boundaries

Crossing flip (Invert two surfaces’
relative depths in an area of overlap)

Sign-of-occlusion flip

Effects of Interactions on the Labeling

Creation & deletion of crossings

Reordering of crossings around boundaries

Crossing-state flips

Sign-of-occlusion flips

Reshaping or dragging boundaries without causing topological
changes

Requiring relabeling (topological change)

Not requiring relabeling (no topological change)

Crossing Projection
stationary boundary

moving boundary

crossing A

1 2 3
4 5

6

drag direction

time step

crossing B

Important to preserve
crossing-states

Naive destruction/
rediscovery of crossings
would lose crossing-
states

Druid projects crossings
as they move around
boundaries

To Min. Acceptable Mouse Delta

Demonstration of Druid

Druid knows
to move both
boundaries at
once.

Druid relabels
when the
interlock
breaks.

A

B

C

D

A

B

C

D

Labeling space: Possible labelings for a labeled
knot-diagram. Labeling space size: 2

Finding a Legal Labeling

C

Druid maintains a legal labeling automatically.

Minimum-Difference Search
Druid searches the labeling space for

the minimum-difference labeling.

A

B

C

D

A

B

C

D

Labeling is currently in state B.
User clicks the blue-circle marked crossing.
C and D are possible solutions, C is minimum difference from B.

Branch-and-bound

Constraint propagation

Iterative deepening

Timeouts

The Labeling Search

Branch-and-bound

Search goal: minimum difference labeling

Node expansion can never decrease the
accumulated labeling difference

Minimum difference legal solution gives
the bound

Search is truncated when the
accumulated current difference exceeds
the bound

Constraint Propagation (Waltz ‘75)

Orders the search so
that legal solutions
are found earlier

Legal solutions define bounds

Constraint propagation works in concert
with branch-and-bound to increase search
efficiency

Waltz, D. L., Understanding line drawings of scenes with shadows, McGraw-Hill, New York, pp. 19-92, 1975.

Iterative Deepening

Branch-and-bound works best if good
solutions are found earlier

In good solutions, changes are localized
to the area of interest

Search is restarted with increasing search
horizons

Timeouts

The search can take too long

Two timeouts:

Very short timeout (0.1 sec): If a solution has
been found during the search

Longer timeout (5.0 sec): If no solution has been
found yet

Measuring Drawing Complexity

Total number of crossings

Maximum depth

Experiments: Two Labeling Methods

Randomized labeling

Incremental labeling

Test 1

Number of crossings:
linear in the number
of surfaces

Max depth:
constant

Test 1: Labeling Time vs. # Crossings
Running Time vs. # Crossings

(Incremental Labeling)
Running time vs. # Crossings

0 10 20 30

Number of Crossings

0

5

10

15

20

25

S
e

c
o

n
d

s

Randomized
Incremental

5 10 15 20 25 30 35

Number of Crossings

0.005

0.01

0.015

0.02

S
e

c
o

n
d

s

0 10 20 30

Number of Crossings

0.001

0.01

0.1

1

10

S
e

c
o

n
d

s

Randomized
Incremental

Running time vs.
Crossings
(log Y axis)

1

2

3

Test 2

Number of crossings:
quadratic in the
number of surfaces

Max depth:
linear in the number
of surfaces

0 100 200 300

Number of Crossings

0

0.5

1

1.5

2

S
e

c
o

n
d

s

0 100 200 300

Number of Crossings

0.001

0.01

0.1

1

10

100

S
e

c
o

n
d

s

Randomized
Incremental

0 5 10 15 20 25 30 35

1x10-3

1x10-2

0.1

1

10

1x102

0 100 200 300

Number of Crossings

0

20

40

60

80

100

120

S
e

c
o

n
d

s

Randomized
Incremental

Test 2: Labeling Time vs. # Crossings
Running Time vs. Number of Crossings

(Incremental Labeling)
Running time vs. Number of Crossings

Running time vs.
Number of Crossings

(log Y axis)

1

2

3

2 4 6 8 10 12 14 16 18 20

Depth Complexity

0

0.5

1

1.5

2

S
e

c
o

n
d

s

5 10 15 20

Depth Complexity

0.001

0.01

0.1

1

10

100

S
e

c
o

n
d

s

Randomized
Incremental

5 10 15 20

Depth Complexity

0

20

40

60

80

100

120

S
e

c
o

n
d

s

Randomized
Incremental

Test 2: Labeling Time vs. Max Depth
Running time vs. Max Depth Running time vs. Max Depth

Running time vs.
Max Depth
(log Y axis)

1

2

3

Boundary Grouping with Cuts

cut

A

B

Some surfaces have multiple boundaries

This can cause problems

A cut between two different boundaries
reduces the number of boundaries by one

Cuts are a geometric device. Needn’t be horizontal or straight.

Cut Labeling Schemes

y ≥ x y + 1

x

x

y

x > y

x

y

x

x

x

x

y

x > y

y

A boundary crosses a cut
with the boundary above

A boundary crosses a cut
with the boundary below

A cut crosses a cut A cut ends and attaches
to a boundary, i.e., a

T-junction

Using cuts requires four new labeling schemes

Cuts denoted with a double line (top row) and a gap (bottom row)

1 2 3 4

0

1

121
1

Q (hole)

a c db 0

M
N

P

0

1

0121
1 e

Q (hole)

a c db
0

M
N

P

Finding Legal Cuts

A successful cut:
Last crossing (e) is
legal.

An unsuccessful cut:
Last crossing (d) is
illegal.

Rendering

Metelli, F., The perception of transparency, Scientific American, 230(4), pp. 90-98, 1974.

Conversion of a labeled
knot-diagram to an
image with solid fills

Requires full depth
ordering of all surfaces
covering each region

Druid uses the
episcotister model
(Metelli ‘74)

Slice
A slice connects a location on a boundary
to a point within the bounded surface

Similar to a cut

Slice

Boundary

Slices are a geometric device. Needn’t be horizontal or straight.

Using Slices to Find Region Coverings

1 1

11

1

1 1

1

11

2

2
1 1

11

1

1 1

1

1

1

2

2

1

00

0

0

1 1

11

1

1 1

1

1

1

2

2

1

1

1 1

11

1

1 1

1

1

1

2

2

1

21
00

0

0

0

Red is above
green, which
is above blue

Druid Examples

Search space size: 2 for C crossings

A drawing can have hundreds of crossings.

The search takes too long for complex
drawings.

Thus, Druid as described in (Wiley and
Williams ‘06a) was limited.

A Problem with the Search
C

Wiley, K. B., Williams, L., 2006. Representation of Interwoven Surfaces in 2 1/2 D Drawing. Proc. of CHI, Conference on
Human Factors in Computing Systems, Montreal, Canada, 2006.

A Problem with the Search (contd.)

Druid fails to label this
flip in under 120
seconds in 50% of tests

Druid takes 35 seconds on
average to perform one of
these flips (and fails in 2%
of tests)

Crossing-State Equivalence Class Rule

Discovered a property of 2½D scenes, the
crossing-state equivalence class (CSEC)
rule

Use this property to improve performance

Area of Overlap

Area of overlap: The maximum contiguous area where two
surfaces overlap, e.g., the shaded area for surfaces 1 and 2

Corner: A crossing where a traversal of an area of overlap’s border
switches boundaries, e.g., the blue diamonds for the shaded area

Numbers
label unique

surfaces

1

3

2

1

2

Crossing-State Equivalence Class
(CSEC)

 The corners of an area of overlap

Unique shapes/colors
indicate CSECs

1

3

2

1

2

Finding CSECs on Labeled Figures

Intend to use CSECs to improve
performance

But Druid must find the CSECs before
they can be used

How long does this take? Does it
cancel the benefit of using CSECs in
the first place?

Finding CSECs on Labeled Figures

Experiment: Across a
spectrum of CSEC
sizes, measure the
time required to find
all CSECs.

In this experiment
there is only one
CSEC.

Finding CSECs on Labeled Figures

10 20 30 40 50

Total Number of Crossings

0.001

0.01

0.1

S
e
c
o
n
d
s

10 20 30 40 50

Total Number of Crossings

0

0.05

0.1

0.15

0.2

0.25

0.3

S
e
c
o
n
d
s

Running time to find CSECs for these figures is
polynomial in the number of crossings.

Note: The actual time is very low (.3 secs for
52 crossings)

Running Time vs. # Crossings
Running Time vs. # Crossings

(log Y axis)

Crossing-State Equivalence Class Rule
All members of a crossing-state

equivalence class must be in the same state.

e.g., for surfaces 2 and 3 all corners of the green circle CSEC must
be in the same state, i.e., either 2 is above 3 or vs/va.

1

3

2

1

2

Two Relabeling Methods

1. Druid (OLD): Performs a tree search (Wiley and

Williams ‘06a).

2. Druid (NEW): Maintains the CSECs without
a search. Deduces resulting segment
depth changes directly (Wiley and Williams ‘06b).

Wiley, K. B., and L. R. Williams, 2006. Representation of Interwoven Surfaces in 2 1/2 D Drawing. Proc. of CHI, Conference on
Human Factors in Computing Systems, Montreal, Canada, 2006.

Wiley, K. B., and L. R. Williams. Use of Crossing-State Equivalence Classes for Rapid Relabeling of Knot-Diagrams Representing
2 1/2 D Scenes. Tech Report, UNM, Dept of Computer Science, TR-CS-2006-08, 2006.

Druid version

0.001

0.01

0.1

1

S
e

c
o

n
d

s

Left - Min
Center - Mean
Right - Max

Druid (OLD) Druid (NEW)

.159

.002

Results: A Small CSEC Flip

Min, mean, max with respect to a crossing-flip performed independently on each corner

Size 4, indicated with circles
Running times on 1.6GHz G5 PowerMac
Druid (NEW) performs 85 times faster than
Druid (OLD)

Druid version

0.001

0.01

0.1

1

10

100

1000

S
e

c
o

n
d

s

Left - Min
Center - Mean
Right - Max

Druid (OLD) Druid (NEW)

3.07

.003

Results: A Large CSEC Flip

Min, mean, max with respect to a crossing-flip performed independently on each corner

Size 16, indicated with circles
Druid (OLD) cannot relabel in a reasonable
time
Druid (NEW) performs 967 times faster
Note: Druid (OLD) failed 50% of the time

Druid version

0.001

0.01

0.1

1

10

100

1000

S
e

c
o

n
d

s

Left - Min
Center - Mean
Right - Max

Druid (OLD) Druid (NEW)

35.6

.018

Results: A Complex Figure
256 crossings, 64 CSECs
Druid (OLD) cannot relabel this small CSEC
flip in a reasonable time
Druid (NEW) relabels in .02 seconds, 1900
times faster
Note: Druid (OLD) failed 2% of the time

CSEC Flip Performance

Flipped CSEC size:
linear in the total
number of crossings

10 20 30 40 50

Flipped CSEC size (also total number of crossings)

0

20

40

60

80

100

120

S
e

c
o

n
d

s

Druid (OLD)
Druid (NEW)

CSEC Flip Performance
Running time vs. CSEC size

To CSEC flip test 2

CSEC Flip Performance (Druid (NEW))
CSEC Flip Performance (Druid (NEW))

(log Y axis)

Performance is polynomial w.r.t. CSEC size

Search Performance (Druid (OLD))
(log Y axis)Search Performance (Druid (OLD))

Performance is exponential w.r.t. CSEC size

5 10 15 20

Flipped CSEC size (also total number of crossings)

0

20

40

60

80

100

120

S
e
c
o
n
d
s

10 20 30 40 50

Flipped CSEC size (also total number of crossings)

0.001

0.01

S
e
c
o
n
d
s

10 20 30 40 50

Flipped CSEC size (also total number of crossings)

0.002

0.004

0.006

0.008

0.01

S
e
c
o
n
d
s

5 10 15 20

Flipped CSEC size (also total number of crossings)

0.01

0.1

1

10

100

S
e
c
o
n
d
s

1 2 3

4 5

Future Work

Labeling with CSECs

Locking and kinematic interactions

Occluding contours and pita surfaces

CSECs have a profound effect on the
search space size
e.g., this drawing has 40 crossings but only
7 CSECs, an improvement by a factor of 2,
or 8.5 billion

Future Work: Labeling with CSECs

CSECs Used
Crossing-state

search space size

No 2 (for 40 crossings)

Yes 2 (for 7 CSECs)

40

7

33

Currently, can only find CSECs on legally
labeled figures

Cannot use CSECs to label, only to relabel

Labeling must search the naive search space
2, not the improved search space 2

Having the CSECs for an unlabeled figure
would greatly assist the labeling search

Labeling with CSECs

C E

Future Work: Locking Interactions

Broken Locked

Original

Locking and Kinematic Interactions

Broken Locked

Original

Future Work: Occluding Contours and
Pita Surfaces

An occluding contour is the projection of a fold.

Occluding Contours: Examples
Occluding contours enable construction of

cylinders and Mobius strips.

Occluding Contours: Pita Surfaces
Occluding contours enable

construction of pita surfaces.

pita surface pita containment

Occluding Contour Labeling Schemes

x

x x

x

x x

x

x x + 1

x

x + 1 x

Occluding contour
Y-junctions

Occluding contour
to boundary

crossings

y ≥ x y + 2

x

x

x x + 1

Cusp V-junctions

x

x

y ≥ x y + 2

y y

x

x ≥ y

y ≥ x y + 2

x

x
Occluding contour

to cut crossings

x + 1

x ≥ y

y y

xx + 1

Occluding contour to
occluding contour crossing

Conclusions

Developed Druid, a system for constructing interwoven 2½D
scenes

Use of branch-and-bound search to relabel gives the user the
experience of interacting directly with idealized physical surfaces

Search hinders Druid’s scalability

Discovered a topological property of 2½D scenes, the crossing-
state equivalence class rule

Exploitation of this property can alleviate the need to search in
some situations, and can dramatically reduce the search space in
remaining situations

Vastly extended the complexity of drawings that users of Druid can
construct

Min. Acceptable Mouse Delta

0

1

2

3

4

a

b

c
d

e
f

Minimum acceptable mouse delta

Sequential dummy mouse locations (letters)
Sequential actual mouse locations (numbers)

After processing dummy
loc a, actual loc remains 1.

After processing dummy
loc c, actual loc remains 2.

After processing dummy
loc f, actual loc remains 4.

After processing dummy loc
b, actual loc has become 2.

After processing dummy loc f, actual loc 4 is within
the min acceptabled delta. The catch up phase is
complete. Actual loc 4 is processed directly.

Actual loc starts at 0, and moves to
1. First dummy loc is created at a.

After processing dummy loc
d, actual loc has become 3.

After processing dummy loc
e, actual loc has become 4.

Dummy mouse projections
Projection rays used to calculate dummy mouse locations

Back

CSEC Flip Performance
Flipped CSEC size:
constant (green)

10 20 30 40 50

Total number of crossings

0.002

0.004

0.006

0.008

0.01

S
e

c
o

n
d

s

Flip time for red CSEC

Flip time for green CSEC

Red plot is the same plot shown on the previous slide
(seconds to perform the red CSEC flip)

Running time vs.
Total Number of Crossings

Back to CSEC flip test 1

Depth Sort vs. Druid
Depth Sort:

Uses cuts to remove cycles and create a DAG.

Renders by sorting polygons in 3D from back to
front.

Druid:
Uses cuts to group boundaries not to remove
cycles.

Makes weaker assumptions to render than
required by depth sort – does not require DAG.

[1] Angel, E. Interactive Computer Graphics. Addison-Wesley, 2006.

[2] Foley, vanDam, Feiner, and Hughes. Computer Graphics, Principles and Practice. Addison-Wesley, 2000.

Scanline Algorithms vs. Druid

Scanline algorithms:
Raster-based

Method for rendering vector objects

Druid:
Vector-based

Relies on graphical API to render vector objects

[1] Barkan, E., and D. Gordon. The Scanline Principle: Efficient Conversion of Display Algorithms into Scanline Mode. The
Visual Computer, 15(249), 1999.

[2] http://www.devmaster.net/wiki/Scanline_algorithm

http://www.devmaster.net/wiki/Scanline_algorithm
http://www.devmaster.net/wiki/Scanline_algorithm

Hidden Surface Removal vs. Druid

Hidden surface removal:
Assumes opaque surfaces bounding
solid objects

Druid:
Assumes transparent fronto-parallel
surfaces

Opaque surfaces are a special case

[1] Weiler K. and Atherton P. Hidden Surface Removal Using Polygon Area Sorting. ACM SIGGRAPH Computer Graphics,
Proceedings of ACM SIGGRAPH 77, 11(3) pp. 214-222, 1977.

[2] Metelli, F., The perception of transparency, Scientific American, 230(4), pp. 90-98, 1974.

http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-weilerk.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-weilerk.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-athertonp.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-athertonp.html

