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Interwoven 2½D Scenes



Introduction
Existing drawing programs:
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Use distinct layers

Impose a DAG

Do not permit 
interwoven surfaces

Our program, Druid, does not 
suffer from these limitations.



Existing Drawing Programs

Noninterwoven 
layers

Boolean 
combinations of 
boundaries, i.e., 
holes.

Do not span the full space 
of 2½D scenes.



Knots vs. Interwoven Surfaces



Interwoven Surfaces in
Conventional Drawing Programs

1. Spoofs

2. Painting planarized graphs, 
e.g., Adobe Illustrator

3. Local DAG manipulation, 
e.g., MediaChance Real-Draw



Spoofs
A layered arrangement that produces 

the illusion of interwoven surfaces

(2) Paste
(1) Copy from right annulus

(3) Precisely position (4) The spoof is brittle.  If either 
annulus is moved, the spoof breaks.

Tedious to 
construct

Tedious to 
maintain



Adobe Illustrator Method

Convert 
drawing to 
planar graph

Paint faces of 
the graph 
independently



Insufficient for transparent surfaces

Cannot represent self-overlapping surfaces 
(figure below)

MediaChance Real-Draw Pro-3

Push-back tool: The user 
can push the top layer down 
(figures left)

The right annulus is 
pushed down



Affordances

Feasability is not the sole issue.  Convenience and naturalness are 
also issues.

Affordances: The set of interactions that a physical object suggests 
for itself (Norman ‘02).

Unlike conventional drawing programs, Druid’s affordances are 
isomorphic to those of idealized physical surfaces.

The user’s experience is of interacting with surfaces, not pictures 
of surfaces.

Norman, D. A., The Design of Everyday Things, Basic Books, 2002.



Druid’s Representation
Knot-diagram:

A projection of closed curves indicating which 
curve is above where two cross

Labeled knot-diagram (Williams ‘94):

Sign of occlusion for every boundary (arrows)
Depth index for every boundary segment
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Williams, L. R., Perceptual Completion of Occluded Surfaces, PhD dissertation, Univ. of Massachusetts at Amherst, Amherst, 
MA, 1994.



Labeling Scheme
Imposes local constraints on the four 

boundary segment depths at a crossing

Legal labeling: A labeling in which every
crossing satisfies the labeling scheme
(Williams ‘94)

x, y: boundary 
segment depths

Williams, L. R., Perceptual Completion of Occluded Surfaces, PhD dissertation, Univ. of Massachusetts at Amherst, Amherst, 
MA, 1994.



Labeling Scheme Justification



Using Druid



The Crossing-Flip Interaction



Drawing Program Interactions

Create & delete boundaries

Reshape & drag boundaries

Crossing flip (Invert two surfaces’ 
relative depths in an area of overlap)

Sign-of-occlusion flip



Effects of Interactions on the Labeling

Creation & deletion of crossings 

Reordering of crossings around boundaries

Crossing-state flips

Sign-of-occlusion flips

Reshaping or dragging boundaries without causing topological 
changes

Requiring relabeling (topological change)

Not requiring relabeling (no topological change)



Crossing Projection
stationary boundary

moving boundary

crossing A

1 2 3
4 5

6

drag direction

time step

crossing B

Important to preserve 
crossing-states

Naive destruction/
rediscovery of crossings 
would lose crossing-
states

Druid projects crossings 
as they move around 
boundaries

To Min. Acceptable Mouse Delta



Demonstration of Druid

Druid knows 
to move both 
boundaries at 
once.

Druid relabels 
when the 
interlock 
breaks.
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Labeling space: Possible labelings for a labeled 
knot-diagram.  Labeling space size: 2

Finding a Legal Labeling

C

Druid maintains a legal labeling automatically.



Minimum-Difference Search
Druid searches the labeling space for 

the minimum-difference labeling.

A
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D

A
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C

D

Labeling is currently in state B.
User clicks the blue-circle marked crossing.
C and D are possible solutions, C is minimum difference from B.



Branch-and-bound

Constraint propagation

Iterative deepening

Timeouts

The Labeling Search



Branch-and-bound

Search goal: minimum difference labeling

Node expansion can never decrease the 
accumulated labeling difference

Minimum difference legal solution gives 
the bound

Search is truncated when the 
accumulated current difference exceeds 
the bound



Constraint Propagation (Waltz ‘75)

Orders the search so
that legal solutions
are found earlier

Legal solutions define bounds

Constraint propagation works in concert 
with branch-and-bound to increase search 
efficiency 

Waltz, D. L., Understanding line drawings of scenes with shadows, McGraw-Hill, New York, pp. 19-92, 1975.



Iterative Deepening

Branch-and-bound works best if good 
solutions are found earlier

In good solutions, changes are localized 
to the area of interest

Search is restarted with increasing search 
horizons



Timeouts

The search can take too long

Two timeouts:

Very short timeout (0.1 sec): If a solution has 
been found during the search

Longer timeout (5.0 sec): If no solution has been 
found yet



Measuring Drawing Complexity

Total number of crossings

Maximum depth



Experiments: Two Labeling Methods

Randomized labeling

Incremental labeling



Test 1

Number of crossings:
linear in the number 
of surfaces

Max depth:
constant



Test 1: Labeling Time vs. # Crossings
Running Time vs. # Crossings

(Incremental Labeling)
Running time vs. # Crossings
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Test 2

Number of crossings:
quadratic in the 
number of surfaces

Max depth:
linear in the number 
of surfaces
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(Incremental Labeling)
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Boundary Grouping with Cuts

cut

A

B

Some surfaces have multiple boundaries

This can cause problems

A cut between two different boundaries 
reduces the number of boundaries by one

Cuts are a geometric device.  Needn’t be horizontal or straight.



Cut Labeling Schemes

y ≥ x y + 1

x

x

y

x > y

x

y

x

x

x

x

y

x > y

y

A boundary crosses a cut 
with the boundary above

A boundary crosses a cut 
with the boundary below

A cut crosses a cut A cut ends  and attaches 
to a boundary, i.e., a 

T-junction

Using cuts requires four new labeling schemes

Cuts denoted with a double line (top row) and a gap (bottom row)

1 2 3 4
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Finding Legal Cuts

A successful cut:  
Last crossing (e) is 
legal.

An unsuccessful cut:  
Last crossing (d) is 
illegal.



Rendering

Metelli, F., The perception of transparency, Scientific American, 230(4), pp. 90-98, 1974.

Conversion of a labeled 
knot-diagram to an 
image with solid fills

Requires full depth 
ordering of all surfaces 
covering each region

Druid uses the 
episcotister model
(Metelli ‘74)



Slice
A slice connects a location on a boundary 
to a point within the bounded surface

Similar to a cut

Slice

Boundary

Slices are a geometric device.  Needn’t be horizontal or straight.



Using Slices to Find Region Coverings
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Druid Examples



Search space size: 2  for C crossings

A drawing can have hundreds of crossings.

The search takes too long for complex 
drawings.

Thus, Druid as described in (Wiley and 
Williams ‘06a) was limited.

A Problem with the Search
C

Wiley, K. B., Williams, L., 2006. Representation of Interwoven Surfaces in 2 1/2 D Drawing. Proc. of CHI, Conference on 
Human Factors in Computing Systems, Montreal, Canada, 2006.



A Problem with the Search (contd.)

Druid fails to label this 
flip in under 120 
seconds in 50% of tests

Druid takes 35 seconds  on 
average to perform one of 
these flips (and fails in 2% 
of tests)



Crossing-State Equivalence Class Rule

Discovered a property of 2½D scenes, the 
crossing-state equivalence class (CSEC) 
rule

Use this property to improve performance



Area of Overlap

Area of overlap: The maximum contiguous area where two 
surfaces overlap, e.g., the shaded area for surfaces 1 and 2

Corner: A crossing where a traversal of an area of overlap’s border 
switches boundaries, e.g., the blue diamonds for the shaded area

Numbers 
label unique 

surfaces

1

3

2

1

2



Crossing-State Equivalence Class
(CSEC)

 The corners of an area of overlap

Unique shapes/colors 
indicate CSECs
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2



Finding CSECs on Labeled Figures

Intend to use CSECs to improve 
performance

But Druid must find the CSECs before 
they can be used

How long does this take?  Does it 
cancel the benefit of using CSECs in 
the first place?



Finding CSECs on Labeled Figures

Experiment: Across a 
spectrum of CSEC 
sizes, measure the 
time required to find 
all CSECs.

In this experiment 
there is only one 
CSEC.



Finding CSECs on Labeled Figures
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Running time to find CSECs for these figures is 
polynomial in the number of crossings.

Note: The actual time is very low (.3 secs for 
52 crossings)

Running Time vs. # Crossings
Running Time vs. # Crossings

(log Y axis)



Crossing-State Equivalence Class Rule
All members of a crossing-state

equivalence class must be in the same state.

e.g., for surfaces 2 and 3 all corners of the green circle CSEC must 
be in the same state, i.e., either 2 is above 3 or vs/va.
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1

2



Two Relabeling Methods

1. Druid (OLD): Performs a tree search (Wiley and 

Williams ‘06a).

2. Druid (NEW): Maintains the CSECs without 
a search.  Deduces resulting segment 
depth changes directly (Wiley and Williams ‘06b).

Wiley, K. B., and L. R. Williams, 2006. Representation of Interwoven Surfaces in 2 1/2 D Drawing. Proc. of CHI, Conference on 
Human Factors in Computing Systems, Montreal, Canada, 2006.

Wiley, K. B., and L. R. Williams.  Use of Crossing-State Equivalence Classes for Rapid Relabeling of Knot-Diagrams Representing 
2 1/2 D Scenes.  Tech Report, UNM, Dept of Computer Science, TR-CS-2006-08, 2006.



Druid version

0.001

0.01

0.1

1

S
e

c
o

n
d

s

Left - Min
Center - Mean
Right - Max

Druid (OLD) Druid (NEW)

.159

.002

Results: A Small CSEC Flip

Min, mean, max with respect to a crossing-flip performed independently on each corner

Size 4, indicated with circles  
Running times on 1.6GHz G5 PowerMac
Druid (NEW) performs 85 times faster than 
Druid (OLD)



Druid version
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.003

Results: A Large CSEC Flip

Min, mean, max with respect to a crossing-flip performed independently on each corner

Size 16, indicated with circles
Druid (OLD) cannot relabel in a reasonable 
time
Druid (NEW) performs 967 times faster
Note: Druid (OLD) failed 50% of the time



Druid version
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Druid (OLD) Druid (NEW)

35.6

.018

Results: A Complex Figure
256 crossings, 64 CSECs
Druid (OLD) cannot relabel this small CSEC 
flip in a reasonable time
Druid (NEW) relabels in .02 seconds, 1900 
times faster
Note: Druid (OLD) failed 2% of the time



CSEC Flip Performance

Flipped CSEC size: 
linear in the total 
number of crossings
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Running time vs. CSEC size

To CSEC flip test 2
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Performance is polynomial w.r.t. CSEC size

Search Performance (Druid (OLD))
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Performance is exponential w.r.t. CSEC size
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Future Work

Labeling with CSECs

Locking and kinematic interactions

Occluding contours and pita surfaces



CSECs have a profound effect on the 
search space size
e.g., this drawing has 40 crossings but only 
7 CSECs, an improvement by a factor of 2, 
or 8.5 billion

Future Work: Labeling with CSECs

CSECs Used
Crossing-state

search space size

No 2    (for 40 crossings)

Yes 2  (for 7 CSECs)

40

7

33



Currently, can only find CSECs on legally 
labeled figures

Cannot use CSECs to label, only to relabel

Labeling must search the naive search space 
2, not the improved search space 2

Having the CSECs for an unlabeled figure 
would greatly assist the labeling search

Labeling with CSECs

C E



Future Work: Locking Interactions

Broken Locked

Original



Locking and Kinematic Interactions

Broken Locked

Original



Future Work: Occluding Contours and 
Pita Surfaces

An occluding contour is the projection of a fold.



Occluding Contours: Examples
Occluding contours enable construction of 

cylinders and Mobius strips.



Occluding Contours: Pita Surfaces
Occluding contours enable 

construction of pita surfaces.

pita surface pita containment



Occluding Contour Labeling Schemes

x

x x

x

x x

x

x x + 1

x

x + 1 x

Occluding contour 
Y-junctions

Occluding contour 
to boundary 

crossings

y ≥ x y + 2

x

x

x x + 1

Cusp V-junctions

x

x

y ≥ x y + 2

y y

x

x ≥ y

y ≥ x y + 2

x

x
Occluding contour 

to cut crossings

x + 1

x ≥ y

y y

xx + 1

Occluding contour to 
occluding contour crossing



Conclusions

Developed Druid, a system for constructing interwoven 2½D 
scenes

Use of branch-and-bound search to relabel gives the user the 
experience of interacting directly with idealized physical surfaces 

Search hinders Druid’s scalability

Discovered a topological property of 2½D scenes, the crossing-
state equivalence class rule

Exploitation of this property can alleviate the need to search in 
some situations, and can dramatically reduce the search space in 
remaining situations

Vastly extended the complexity of drawings that users of Druid can 
construct





Min. Acceptable Mouse Delta
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Minimum acceptable mouse delta

Sequential dummy mouse locations (letters)
Sequential actual mouse locations (numbers)

After processing dummy 
loc a, actual loc remains 1.

After processing dummy 
loc c, actual loc remains 2.

After processing dummy 
loc f, actual loc remains 4.

After processing dummy loc 
b, actual loc has become 2.

After processing dummy loc f, actual loc 4 is within 
the min acceptabled delta.  The catch up phase is 
complete.  Actual loc 4 is processed directly.

Actual loc starts at 0,  and moves to 
1.  First dummy loc is created at a.

After processing dummy loc 
d, actual loc has become 3.

After processing dummy loc 
e, actual loc has become 4.

Dummy mouse projections
Projection rays used to calculate dummy mouse locations

Back



CSEC Flip Performance
Flipped CSEC size:
constant (green)
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Flip time for red CSEC

Flip time for green CSEC

Red plot is the same plot shown on the previous slide 
(seconds to perform the red CSEC flip)

Running time vs.
Total Number of Crossings

Back to CSEC flip test 1



Depth Sort vs. Druid
Depth Sort:

Uses cuts to remove cycles and create a DAG. 

Renders by sorting polygons in 3D from back to 
front.

Druid:
Uses cuts to group boundaries not to remove 
cycles.

Makes weaker assumptions to render than 
required by depth sort – does not require DAG.

[1] Angel, E.  Interactive Computer Graphics. Addison-Wesley, 2006.

[2] Foley, vanDam, Feiner, and Hughes.  Computer Graphics, Principles and Practice.  Addison-Wesley, 2000.



Scanline Algorithms vs. Druid

Scanline algorithms:
Raster-based

Method for rendering vector objects

Druid:
Vector-based

Relies on graphical API to render vector objects

[1] Barkan, E., and D. Gordon.  The Scanline Principle: Efficient Conversion of Display Algorithms into Scanline Mode.  The 
Visual Computer, 15(249), 1999.

[2] http://www.devmaster.net/wiki/Scanline_algorithm

http://www.devmaster.net/wiki/Scanline_algorithm
http://www.devmaster.net/wiki/Scanline_algorithm


Hidden Surface Removal vs. Druid

Hidden surface removal:
Assumes opaque surfaces bounding 
solid objects

Druid:
Assumes transparent fronto-parallel 
surfaces

Opaque surfaces are a special case

[1] Weiler K. and Atherton P.  Hidden Surface Removal Using Polygon Area Sorting.  ACM SIGGRAPH Computer Graphics, 
Proceedings of ACM SIGGRAPH 77, 11(3) pp. 214-222, 1977.

[2] Metelli, F., The perception of transparency, Scientific American, 230(4), pp. 90-98, 1974.

http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-weilerk.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-weilerk.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-athertonp.html
http://isgwww.cs.uni-magdeburg.de/~stefans/npr/author-athertonp.html

