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 Implementing Coaddition within MapReduce
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 Dark energy
 Large scale structure of universe
 Gravitational lensing
 Asteroid detection/tracking

Astronomical Topics of Study
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 Dedicated sky surveys,
usually from a single calibrated telescope/camera pair.

 Run for years at a time.

 Gather millions of images and TBs of storage*.

 Require high-throughput data reduction pipelines.

 Require sophisticated off-line data analysis tools.

What is Astronomical Survey Science?

* Next generation surveys will gather PBs of image data.
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 SDSS* (1999-2005)
 Founded in part by UW
 1/4 of the sky
 80TBs total data

Sky Surveys: Today and Tomorrow

* Sloan Digital Sky Survey
† Large Synoptic Survey Telescope

That’s a person!

 LSST† (2015-2025)
 8.4m mirror, 3.2 gigapixel camera
 Half sky every three nights
 30TB per night...

...one SDSS every three nights
 60PBs total (nonstop ten years)
 1000s of exposures of each location
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FITS (Flexible Image Transport System)

* Position on sky

 Common astronomical image representation file format
 Metadata tags (like EXIF):

› Most importantly: Precise astrometry*

› Other:
• Geolocation (telescope location)
• Sky conditions, image quality, etc.

 Bottom line:
› An image format that

knows where it is looking.
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 Give multiple partially overlapping images
and a query (color and sky bounds):
› Find images’ intersections with the query bounds.
› Project bitmaps to the bounds.
› Stack and mosaic into a final product.

Image Coaddition
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Image Coaddition
 Give multiple partially overlapping images

and a query (color and sky bounds):
› Find images’ intersections with the query bounds.
› Project bitmaps to the bounds.
› Stack and mosaic into a final product.

Expensive
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Cheap



 Stacking improves SNR:
› Makes fainter objects visible.

 Example (SDSS, Stripe 82):
› Top: Single image, R-band
› Bottom: 79-deep stack

• (~9x SNR improvement)
• Numerous additional detections

 Variable conditions (e.g., 
atmosphere, PSF, haze) mean 
stacking algorithm complexity can 
exceed a mere sum.

Image Stacking (Signal Averaging)
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Coaddition in Hadoop

Mapper

Mapper

Mapper

Input FITS image

Projected 
intersection

Final coadd

Mapper

Detect 
intersection with 
query bounds.

Project bitmap to 
query’s coord sys.

HDFS

Reducer

Stack and mosaic 
projected 

intersections.
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Parallel Serial



 To assist the process we prefilter
the FITS files in the driver.

 SDSS camera has 30 CCDs:
› 5 colors
› 6 abutting strips of sky

 Prefilter (path glob) by color
and sky coverage (single axis):
› Exclude many irrelevant FITS files.
› Sky coverage filter is only single axis:

• Thus, false positives slip through...
...to be discarded in the mappers.

Driver Prefiltering

Query bounds
Relevant FITS
Prefilter-excluded FITS
False positives 1 FITS
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Error bars show 95% confidence intervals  —  Outliers removed via Chauvenet

Performance Analysis
 Running time:

› 2 query sizes
› Run against 

1/10th of SDSS
(100,058 FITS)

 Conclusion:
› Considering the 

small dataset, this 
is too slow!

› Remember 42 
minutes for the 
next slide.
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  Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()  

Hadoop Stage
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Performance Analysis
 Breakdown of large 

query running time

 main()  is sum of:
› Driver
› runJob()

 runJob()  is sum of
MapReduce  parts.

Driver
runJob()

main()

Driver MapReduce

MapReduce
runJob()

runJob() main()
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  Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()  

Hadoop Stage

0

10

20

30

40

M
in

ut
es

Performance Analysis
RPCs from 

client to HDFS

 Breakdown of large 
query running time

 Observation:
› Running time 

dominated by 
RPCs from client 
to HDFS to 
process 1000s of 
FITS file paths.

 Conclusion:
› Need to reduce 

number of files.

Total job time 
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 Sequence files group many small files into a few large files.
 Just what we need!
 Real-time images may not be amenable to logical grouping.
› Therefore, sequence files filled in an arbitrary manner:

Sequence Files

FITS

FITS

FITS

FITS

Sequence

Sequence

Hash
Function

filename
FITS

assignment
to Seq
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis
 Comparison:

› FITS input vs. 
unstructured 
sequence file 
input*

 Conclusion:
› 5x speedup!

 Hmmm...
Can we do better?
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* 360 seq files in hashed seq DB.



1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis
 Comparison:

› FITS input vs. 
unstructured 
sequence file 
input*

 Conclusion:
› 5x speedup!

 Hmmm...
Can we do better?
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Processed a subset 
of the database 
after prefiltering

Processed 
the entire 

database, but 
still ran faster

* 360 seq files in hashed seq DB.



 Similar to the way we prefiltered
FITS files...

 SDSS camera has 30 CCDs:
› 5 colors
› 6 abutting strips of sky
› Thus, 30 sequence file types

 Prefilter by color and
sky coverage (single axis):
› Exclude irrelevant sequence files.
› Still have false positives.
› Catch them in the mappers as before.

Structured Sequence Files

Query bounds
Relevant FITS
Prefilter-excluded FITS
False positives 1 FITS
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Error bars show 95% confidence intervals  —  Outliers removed via Chauvenet

Performance Analysis
 Comparison:

› FITS vs. 
unstructured 
sequence* vs. 
structured 
sequence files†

 Conclusion:
› Another 2x 

speedup for the 
large query, 1.5x 
speedup for the 
small query.
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* 360 seq files in hashed seq DB.
† 1080 seq files in structured DB.



 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered

Performance Analysis
 Breakdown of large 

query running time

 Prediction:
› Prefiltering should 

gain performance 
in the mapper.

 Does it?

20



 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage
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Seq grouped, prefiltered

Performance Analysis
 Breakdown of large 

query running time

 Prediction:
› Prefiltering should 

gain performance 
in the mapper.

 Conclusion:
› Yep, just as 

expected.
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Performance Analysis
 Experiments were 

performed on a 
100,058 FITS 
database
(1/10th SDSS).

 How much of this 
database is 
Hadoop churning 
through?

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Error bars show 95% confidence intervals  —  Outliers removed via Chauvenet
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis

* 360 seq files in hashed seq DB.
† 1080 seq files in structured DB.
‡ 800 mapper slots on cluster.

13,335 FITS files
144 sequence files†

341 mappers‡

100,058 FITS files
360 sequence files*

2077 mappers‡

13,415 FITS files
499 mappers‡

 Comparison:
› Number of FITS 

considered in 
mappers vs. 
number 
contributing to 
coadd

 Conclusion:
› Mappers must 

discard many 
FITS files due to 
nonoverlap of 
query bounds.
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3885 FITS



 Store all image colors and sky bounds in a database:
› First, query color and intersections via SQL.
› Second, send only relevant images to MapReduce.

 Consequence:
All images processed by mappers contribute to coadd.
No time wasted considering irrelevant images.

Using SQL to Find Intersections

Driver

MapReduce

SQL
Database(1) Retrieve 

FITS filenames 
that overlap 

query bounds

(2) Only load relevant 
images into MapReduce
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis
 Comparison:
› nonSQL vs. SQL 

 Conclusion:
› Sigh, no major 

improvement
(SQL is not 
remarkably 
superior to 
nonSQL for given 
pairs of bars).
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis
 Comparable 

performance here 
makes sense:
› In essence, 

prefiltering and 
SQL performed 
similar tasks, 
albeit with 3.5x 
different mapper 
inputs (FITS).

 Conclusion:
› Cost of discarding 

many images in 
the nonSQL case 
was negligible.26
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Performance Analysis
 Low improvement 

for SQL in the 
hashed case is 
surprising at first
› ...especially 

considering 26x 
different mapper 
inputs (FITS).
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Query Sky Bounds Extent
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Performance Analysis
 Low improvement 

for SQL in the 
hashed case is 
surprising at first
› ...especially 

considering 26x 
different mapper 
inputs (FITS).

 Theory:
› Scattered 

distribution of 
relevant FITS 
prevented 
efficient mapper 
reuse.

Mapper requirements exceeded 
cluster capacity(~800).  We lost 
parallelism (mappers were queued)!

Consequently
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1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent
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Results
 Just to be clear:

› Prefiltering 
improved due to 
reduction of 
mapper load.

› SQL improved 
due to data 
locality and more 
efficient mapper 
allocation – the 
required work 
was unaffected 
(3885 FITS).
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 Despite our results
(which show SQL to be equivalent to prefiltering)...

 ...we predict that SQL should outperform prefiltering on 
larger databases.

 Why?
› Prefiltering would contend with an increasing number of 

false positives in the mappers*.
› SQL would incur little additional overhead.

 No experiments on this yet.

Utility of SQL Method

* A spacing-filling curve for grouping the data might help.
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 Packing many small files into a few large files is essential.
 Structured packing and associated prefiltering offers 

significant gains (reduces mapper load).
 SQL prefiltering of unstructured sequence files yields little 

improvement (failure to combine scattered HDFS file-splits 
leads to mapper bloat).

 SQL prefiltering of structured sequence files performs 
comparably to driver prefiltering, but we anticipate superior 
performance on larger databases.

 On a shared cluster (e.g. the cloud), performance variance 
is high – doesn’t bode well for online applications.  Also 
makes precise performance profiling difficult.

Conclusions

31



 Parallelize the reducer.
 Less conservative CombineFileSplit builder.
 Conversion to C++, usage of existing C++ libraries.
 Query by time-range.
 Increase complexity of projection/interpolation:

› PSF matching
 Increase complexity of stacking algorithm:

› Convert straight sum to weighted sum by image quality.
 Work toward the larger science goals:

› Study the evolution of galaxies.
› Look for moving objects (asteroids, comets).
› Implement fast parallel machine learning algorithms for 

detection/classification of anomalies.

Future Work
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Questions?

kbwiley@astro.washington.edu
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