
Astronomical Image
Processing with Hadoop
Keith Wiley*

Survey Science Group
Dept. of Astronomy, Univ. of Washington

* Keith Wiley, Andrew Connolly,
YongChul Kwon, Magdalena
Balazinska, Bill Howe, Jeffrey
Garder, Simon Krughoff, Yingyi Bu,
Sarah Loebman and Matthew Kraus

1

 Astronomical Survey Science
 Image Coaddition
 Implementing Coaddition within MapReduce
 Optimizing the Coaddition Process
 Conclusions
 Future Work

Session Agenda

2

 Dark energy
 Large scale structure of universe
 Gravitational lensing
 Asteroid detection/tracking

Astronomical Topics of Study

3

 Dedicated sky surveys,
usually from a single calibrated telescope/camera pair.

 Run for years at a time.

 Gather millions of images and TBs of storage*.

 Require high-throughput data reduction pipelines.

 Require sophisticated off-line data analysis tools.

What is Astronomical Survey Science?

* Next generation surveys will gather PBs of image data.
4

 SDSS* (1999-2005)
 Founded in part by UW
 1/4 of the sky
 80TBs total data

Sky Surveys: Today and Tomorrow

* Sloan Digital Sky Survey
† Large Synoptic Survey Telescope

That’s a person!

 LSST† (2015-2025)
 8.4m mirror, 3.2 gigapixel camera
 Half sky every three nights
 30TB per night...

...one SDSS every three nights
 60PBs total (nonstop ten years)
 1000s of exposures of each location

5

FITS (Flexible Image Transport System)

* Position on sky

 Common astronomical image representation file format
 Metadata tags (like EXIF):

› Most importantly: Precise astrometry*

› Other:
• Geolocation (telescope location)
• Sky conditions, image quality, etc.

 Bottom line:
› An image format that

knows where it is looking.

6

 Give multiple partially overlapping images
and a query (color and sky bounds):
› Find images’ intersections with the query bounds.
› Project bitmaps to the bounds.
› Stack and mosaic into a final product.

Image Coaddition

7

Image Coaddition
 Give multiple partially overlapping images

and a query (color and sky bounds):
› Find images’ intersections with the query bounds.
› Project bitmaps to the bounds.
› Stack and mosaic into a final product.

Expensive

8

Cheap

 Stacking improves SNR:
› Makes fainter objects visible.

 Example (SDSS, Stripe 82):
› Top: Single image, R-band
› Bottom: 79-deep stack

• (~9x SNR improvement)
• Numerous additional detections

 Variable conditions (e.g.,
atmosphere, PSF, haze) mean
stacking algorithm complexity can
exceed a mere sum.

Image Stacking (Signal Averaging)

9

Coaddition in Hadoop

Mapper

Mapper

Mapper

Input FITS image

Projected
intersection

Final coadd

Mapper

Detect
intersection with
query bounds.

Project bitmap to
query’s coord sys.

HDFS

Reducer

Stack and mosaic
projected

intersections.

10

Parallel Serial

 To assist the process we prefilter
the FITS files in the driver.

 SDSS camera has 30 CCDs:
› 5 colors
› 6 abutting strips of sky

 Prefilter (path glob) by color
and sky coverage (single axis):
› Exclude many irrelevant FITS files.
› Sky coverage filter is only single axis:

• Thus, false positives slip through...
...to be discarded in the mappers.

Driver Prefiltering

Query bounds
Relevant FITS
Prefilter-excluded FITS
False positives 1 FITS

11

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

Performance Analysis
 Running time:

› 2 query sizes
› Run against

1/10th of SDSS
(100,058 FITS)

 Conclusion:
› Considering the

small dataset, this
is too slow!

› Remember 42
minutes for the
next slide.

12

 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage

0

10

20

30

40

M
in

ut
es

Performance Analysis
 Breakdown of large

query running time

 main() is sum of:
› Driver
› runJob()

 runJob() is sum of
MapReduce parts.

Driver
runJob()

main()

Driver MapReduce

MapReduce
runJob()

runJob() main()

13

 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage

0

10

20

30

40

M
in

ut
es

Performance Analysis
RPCs from

client to HDFS

 Breakdown of large
query running time

 Observation:
› Running time

dominated by
RPCs from client
to HDFS to
process 1000s of
FITS file paths.

 Conclusion:
› Need to reduce

number of files.

Total job time

14

 Sequence files group many small files into a few large files.
 Just what we need!
 Real-time images may not be amenable to logical grouping.
› Therefore, sequence files filled in an arbitrary manner:

Sequence Files

FITS

FITS

FITS

FITS

Sequence

Sequence

Hash
Function

filename
FITS

assignment
to Seq

15

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

FITS
Seq hashed

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

Performance Analysis
 Comparison:

› FITS input vs.
unstructured
sequence file
input*

 Conclusion:
› 5x speedup!

 Hmmm...
Can we do better?

16

* 360 seq files in hashed seq DB.

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

FITS
Seq hashed

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

Performance Analysis
 Comparison:

› FITS input vs.
unstructured
sequence file
input*

 Conclusion:
› 5x speedup!

 Hmmm...
Can we do better?

17

Processed a subset
of the database
after prefiltering

Processed
the entire

database, but
still ran faster

* 360 seq files in hashed seq DB.

 Similar to the way we prefiltered
FITS files...

 SDSS camera has 30 CCDs:
› 5 colors
› 6 abutting strips of sky
› Thus, 30 sequence file types

 Prefilter by color and
sky coverage (single axis):
› Exclude irrelevant sequence files.
› Still have false positives.
› Catch them in the mappers as before.

Structured Sequence Files

Query bounds
Relevant FITS
Prefilter-excluded FITS
False positives 1 FITS

18

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

FITS
Seq hashed
Seq grouped, prefiltered

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

Performance Analysis
 Comparison:

› FITS vs.
unstructured
sequence* vs.
structured
sequence files†

 Conclusion:
› Another 2x

speedup for the
large query, 1.5x
speedup for the
small query.

19

* 360 seq files in hashed seq DB.
† 1080 seq files in structured DB.

 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered

Performance Analysis
 Breakdown of large

query running time

 Prediction:
› Prefiltering should

gain performance
in the mapper.

 Does it?

20

 Deglob Input Paths

Construct File Splits

Mapper Done
Reducer Done

runJob()
main()

Hadoop Stage

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered

Performance Analysis
 Breakdown of large

query running time

 Prediction:
› Prefiltering should

gain performance
in the mapper.

 Conclusion:
› Yep, just as

expected.

21

Performance Analysis
 Experiments were

performed on a
100,058 FITS
database
(1/10th SDSS).

 How much of this
database is
Hadoop churning
through?

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

FITS
Seq hashed
Seq grouped, prefiltered

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

22

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

5

10

15

20

25

30

35

40

45

M
in

ut
es

FITS
Seq hashed
Seq grouped, prefiltered

Error bars show 95% confidence intervals — Outliers removed via Chauvenet

Performance Analysis

* 360 seq files in hashed seq DB.
† 1080 seq files in structured DB.
‡ 800 mapper slots on cluster.

13,335 FITS files
144 sequence files†

341 mappers‡

100,058 FITS files
360 sequence files*

2077 mappers‡

13,415 FITS files
499 mappers‡

 Comparison:
› Number of FITS

considered in
mappers vs.
number
contributing to
coadd

 Conclusion:
› Mappers must

discard many
FITS files due to
nonoverlap of
query bounds.

23

3885 FITS

 Store all image colors and sky bounds in a database:
› First, query color and intersections via SQL.
› Second, send only relevant images to MapReduce.

 Consequence:
All images processed by mappers contribute to coadd.
No time wasted considering irrelevant images.

Using SQL to Find Intersections

Driver

MapReduce

SQL
Database(1) Retrieve

FITS filenames
that overlap

query bounds

(2) Only load relevant
images into MapReduce

24

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered
SQL ! Seq hashed
SQL ! Seq grouped

Performance Analysis
 Comparison:
› nonSQL vs. SQL

 Conclusion:
› Sigh, no major

improvement
(SQL is not
remarkably
superior to
nonSQL for given
pairs of bars).

25

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered
SQL ! Seq hashed
SQL ! Seq grouped

2077 1714 2149 499
341 338 144 128Num launched mappers

100058
13335

3885
3885

100058
6674

465
465

Num mapper
input records (FITS)

Performance Analysis
 Comparable

performance here
makes sense:
› In essence,

prefiltering and
SQL performed
similar tasks,
albeit with 3.5x
different mapper
inputs (FITS).

 Conclusion:
› Cost of discarding

many images in
the nonSQL case
was negligible.26

13335 3885

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered
SQL ! Seq hashed
SQL ! Seq grouped

2077 1714 2149 499
341 338 144 128Num launched mappers

100058
13335

3885
3885

100058
6674

465
465

Num mapper
input records (FITS)

Performance Analysis
 Low improvement

for SQL in the
hashed case is
surprising at first
› ...especially

considering 26x
different mapper
inputs (FITS).

27

100058 3885

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered
SQL ! Seq hashed
SQL ! Seq grouped

2077 1714 2149 499
341 338 144 128Num launched mappers

100058
13335

3885
3885

100058
6674

465
465

Num mapper
input records (FITS)

Performance Analysis
 Low improvement

for SQL in the
hashed case is
surprising at first
› ...especially

considering 26x
different mapper
inputs (FITS).

 Theory:
› Scattered

distribution of
relevant FITS
prevented
efficient mapper
reuse.

Mapper requirements exceeded
cluster capacity(~800). We lost
parallelism (mappers were queued)!

Consequently

28

100058 3885

1714
338

1° sq (3885 FITS) ¼° sq (465 FITS)
Query Sky Bounds Extent

0

1

2

3

4

5

6

7

8

9

10

M
in

ut
es

Seq hashed
Seq grouped, prefiltered
SQL ! Seq hashed
SQL ! Seq grouped

2077 1714 2149 499
341 338 144 128Num launched mappers

100058
13335

3885
3885

100058
6674

465
465

Num mapper
input records (FITS)

Results
 Just to be clear:

› Prefiltering
improved due to
reduction of
mapper load.

› SQL improved
due to data
locality and more
efficient mapper
allocation – the
required work
was unaffected
(3885 FITS).

29

 Despite our results
(which show SQL to be equivalent to prefiltering)...

 ...we predict that SQL should outperform prefiltering on
larger databases.

 Why?
› Prefiltering would contend with an increasing number of

false positives in the mappers*.
› SQL would incur little additional overhead.

 No experiments on this yet.

Utility of SQL Method

* A spacing-filling curve for grouping the data might help.
30

 Packing many small files into a few large files is essential.
 Structured packing and associated prefiltering offers

significant gains (reduces mapper load).
 SQL prefiltering of unstructured sequence files yields little

improvement (failure to combine scattered HDFS file-splits
leads to mapper bloat).

 SQL prefiltering of structured sequence files performs
comparably to driver prefiltering, but we anticipate superior
performance on larger databases.

 On a shared cluster (e.g. the cloud), performance variance
is high – doesn’t bode well for online applications. Also
makes precise performance profiling difficult.

Conclusions

31

 Parallelize the reducer.
 Less conservative CombineFileSplit builder.
 Conversion to C++, usage of existing C++ libraries.
 Query by time-range.
 Increase complexity of projection/interpolation:

› PSF matching
 Increase complexity of stacking algorithm:

› Convert straight sum to weighted sum by image quality.
 Work toward the larger science goals:

› Study the evolution of galaxies.
› Look for moving objects (asteroids, comets).
› Implement fast parallel machine learning algorithms for

detection/classification of anomalies.

Future Work

32

Questions?

kbwiley@astro.washington.edu

33

mailto:kbwiley@astro.washington.edu
mailto:kbwiley@astro.washington.edu

