
In the coming decade, astronomical surveys of the sky will generate tens of terabytes of 
images and detect hundreds of millions of sources every night. The study of these sources 
will involve computational challenges such as anomaly detection, classification, and moving 
object tracking. Since such studies require the highest quality data, methods such as image 
coaddition, i.e., registration, stacking, and mosaicing, will be critical to scientific 
investigation.

With a requirement that these images be analyzed on a nightly basis to identify moving 
sources (asteroids) or transient objects (supernovae), these datastreams present many 
computational challenges. Given the quantity of data involved, the computational load of 
these problems can only be addressed by distributing the workload over a large number 
of nodes. However, the high data throughput demanded by these applications may present 
scalability challenges for certain storage architectures.

One scalable data-processing method that has emerged in recent years is MapReduce and 
its popular open-source implementation called Hadoop. In the Hadoop framework, the 
data is partitioned among storage attached directly to worker nodes, and the processing 
workload is scheduled in parallel on the nodes that contain the required input data. A 
further motivation for using Hadoop is that it allows us to exploit cloud computing 
resources, i.e., platforms where Hadoop is offered as a service.

Introduction

We wish to use a large in-house C++ image-processing library, but Hadoop is programmed in 
Java.  JNI* coordinates the Java to C++ communication.  The Java Mappers do very little work, 
handing most functionality to C++.  However, the Reducer performs its operations in Java as 
the C++ library is not required at that stage.
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Our research focuses on distributed image coaddition, wherein 
multiple partially overlapping images are background-
subtracted, registered (aligned), PSF-matched, and finally stacked 
(averaged) and mosaiced into a final conglomerative image.

Computing clouds offer 
massive clusters as an on-
demand service.  Users 
create their own programs 
and then submit and run 
them remotely.  This 
arrangement empowers 
users  to use the cloud in 
the ir  own way whi le 
simultaneously mitigating 
geographic inconveniences.
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* Java Native Interface.
† In some versions of our system, 
only the Mapper uses JNI and C++.
‡ Hadoop Distributed File System.

Hadoop operates on the entire input dataset, but image coaddition 
only requires a tiny subset of the total images, only those which 
overlap the query bounds.  We must therefore trim the input dataset.
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These images show a single input image and an example of a coadd 
generated using our system.  The input dataset is the Sloan Digital Sky 
Survey, Stripe 82.  We observe many additional faint sources in the coadd.

We first use SQL to 
find the relevant 
image filenames in a 
meta-database, then 
pass only those 
images to Hadoop.
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Given a coadd of 96 images, the theoretical improved 
limiting magnitude = -2.5log(   96) ≈ -2.5 mags.√

This histogram of point 
s o u r c e d e t e c t i o n s 
demonstrates that we 
h a v e a c h i e v e d a n 
improvement o f ~2 
mags, slightly less than 
the theoretical ~2.5 mag 
improvement, which is 
expected considering the 
footnote in     .8


