
In the coming decade, astronomical surveys of the sky will generate tens of terabytes of
images and detect hundreds of millions of sources every night. The study of these sources
will involve computational challenges such as anomaly detection, classification, and moving
object tracking. Since such studies require the highest quality data, methods such as image
coaddition, i.e., registration, stacking, and mosaicing, will be critical to scientific
investigation.

With a requirement that these images be analyzed on a nightly basis to identify moving
sources (asteroids) or transient objects (supernovae), these datastreams present many
computational challenges. Given the quantity of data involved, the computational load of
these problems can only be addressed by distributing the workload over a large number
of nodes. However, the high data throughput demanded by these applications may present
scalability challenges for certain storage architectures.

One scalable data-processing method that has emerged in recent years is MapReduce and
its popular open-source implementation called Hadoop. In the Hadoop framework, the
data is partitioned among storage attached directly to worker nodes, and the processing
workload is scheduled in parallel on the nodes that contain the required input data. A
further motivation for using Hadoop is that it allows us to exploit cloud computing
resources, i.e., platforms where Hadoop is offered as a service.

Introduction

We wish to use a large in-house C++ image-processing library, but Hadoop is programmed in
Java. JNI* coordinates the Java to C++ communication. The Java Mappers do very little work,
handing most functionality to C++. However, the Reducer performs its operations in Java as
the C++ library is not required at that stage.

7

8

6

4

9

5

3

2
1

University of Washington Astronomy
Survey Science Group

Astronomy In The Cloud: Using MapReduce For Image Coaddition
K. Wiley1, A. Connolly1, J. Gardner2, S. Krughoff1, M. Balazinska3, B. Howe3, Y. Kwon3, Y. Bu3

1. University of Washington, Department of Astronomy 2. University of Washington, Department of Physics 3. University of Washington, Department of Computer Science

This work is funded by the NSF Cluster Exploratory
(CluE) grant (IIS-0844580) and NASA grant 08-
AISR08-0081. The CluE cluster is funded through the
CluE grant and maintained by IBM and Google. We thank
them for their continued support. We further wish to
thank both the LSST group in the astronomy department
and the database research group in the computer science
department at the University of Washington.

Driver
MapReduce

(Hadoop
Coaddition
Program)

SQL
Database

(Science image
metadata)

(1) Retrieve filenames
of images that apply

to the coadd

(2) Load images
into MapReduce

SDSS 2570-r6-199 Coadd of 96 images*

* Coverage is not necessarily
96 at any given pixel

Our research focuses on distributed image coaddition, wherein
multiple partially overlapping images are background-
subtracted, registered (aligned), PSF-matched, and finally stacked
(averaged) and mosaiced into a final conglomerative image.

Computing clouds offer
massive clusters as an on-
demand service. Users
create their own programs
and then submit and run
them remotely. This
arrangement empowers
users to use the cloud in
the ir own way whi le
simultaneously mitigating
geographic inconveniences.

* Distributed
File System

Files stored on DFS* (red nodes
contain data relevant to our job)

1. Mappers process input
data on their own nodes

2. Mapper outputs are shuffled
to reducer nodes (green)

3. Reducers further
process the mapper outputs

* Distributed
File System

Files stored on DFS* (red nodes
contain data relevant to our job)

1. Mappers process input
data on their own nodes

2. Mapper outputs are shuffled
to reducer nodes (green)

3. Reducers further
process the mapper outputs

* Distributed
File System

Files stored on DFS* (red nodes
contain data relevant to our job)

1. Mappers process input
data on their own nodes

2. Mapper outputs are shuffled
to reducer nodes (green)

3. Reducers further
process the mapper outputs

* Distributed
File System

Files stored on DFS* (red nodes
contain data relevant to our job)

1. Mappers process input
data on their own nodes

2. Mapper outputs are shuffled
to reducer nodes (green)

3. Reducers further
process the mapper outputs

* Distributed
File System

MapReduce

Hadoop
Mapper & Reducer†

Programs (Java)

C++ Image
Processing

Library
JNI*

HDFS‡

Input data
(science
images)

Mapper &
Reducer

output data

Input data

Processed data

* Java Native Interface.
† In some versions of our system,
only the Mapper uses JNI and C++.
‡ Hadoop Distributed File System.

Hadoop operates on the entire input dataset, but image coaddition
only requires a tiny subset of the total images, only those which
overlap the query bounds. We must therefore trim the input dataset.

Mapper

Mapper

Mapper

Mapper

Background-
subtract.

Project/interpolate
to query’s

coordinate system.

PSF-match.
Reducer

Weight, stack,
and mosaic the
intersections.

Parallel
by image

Parallel
by query

HDFS

HDFS

Processed
intersection

Input
science image

Final coadd

Image Coaddition in Hadoop

These images show a single input image and an example of a coadd
generated using our system. The input dataset is the Sloan Digital Sky
Survey, Stripe 82. We observe many additional faint sources in the coadd.

We first use SQL to
find the relevant
image filenames in a
meta-database, then
pass only those
images to Hadoop.

The Cloud























          



Given a coadd of 96 images, the theoretical improved
limiting magnitude = -2.5log(96) ≈ -2.5 mags.√

This histogram of point
s o u r c e d e t e c t i o n s
demonstrates that we
h a v e a c h i e v e d a n
improvement o f ~2
mags, slightly less than
the theoretical ~2.5 mag
improvement, which is
expected considering the
footnote in .8

