Volume Title

ASP Conference Series, Vol. **Volume Number**
Author

© **Copyright Year** Astronomical Society of the Pacific

Astronomical Image Processing with Hadoop

Keith Wiley', Andrew Connolly', Simon Krughoft!, Jeff Gardner?, Magdalena
Balazinska?, Bill Howe?, YongChul Kwon?, and Yingyi Bu®

YWniversity of Washington Department of Astronomy
2University of Washington Department of Physics

3University of Washington Department of Computer Science

Abstract. In the coming decade astronomical surveys of the sky will generate tens
of terabytes of images and detect hundreds of millions of sources every night. With
a requirement that these images be analyzed in real time to identify moving sources
such as potentially hazardous asteroids or transient objects such as supernovae, these
data streams present many computational challenges. In the commercial world, new
techniques that utilize cloud computing have been developed to handle massive data
streams. In this paper we describe how cloud computing, and in particular the map-
reduce paradigm, can be used in astronomical data processing. We will focus on our ex-
perience implementing a scalable image-processing pipeline for the SDSS database us-
ing Hadoop (http://hadoop.apache.org/). This multi-terabyte imaging dataset approxi-
mates future surveys such as those which will be conducted with the LSST. Our pipeline
performs image coaddition in which multiple partially overlapping images are regis-
tered, integrated and stitched into a single overarching image. We will first present our
initial implementation, then describe several critical optimizations that have enabled
us to achieve high performance, and finally describe how we are incorporating a large
in-house existing image processing library into our Hadoop system. The optimizations
involve prefiltering of the input to remove irrelevant images from consideration, group-
ing individual FITS files into larger, more efficient indexed files, and a hybrid system in
which a relational database is used to determine the input images relevant to the task.
The incorporation of an existing image processing library, written in C++, presented
difficult challenges since Hadoop is programmed primarily in Java. We will describe
how we achieved this integration and the sophisticated image processing routines that
were made feasible as a result. We will end by briefly describing the longer term goals
of our work, namely detection and classification of transient objects and automated
object classification.

1. Introduction

Future astronomical surveys will generate data in quantities which cannot be processed
by single computers. One potential solution to this problem is to harness large clusters
of computers by using cloud computing. In this paper we describe the development of a
cloud computing based image coaddition system using the Hadoop MapReduce cluster
framework. We describe our system, then show an example of a coadded mosaic and
analyze its improved detection threshold.

2 Keith Wiley

2. Experimental Setup

This research was performed on the CluE cluster (see Acknowledgements). At the time,
the cluster had 700 nodes, each with 4x2.8GHz cores, 8GB ram, and 800GB storage
for a total cluster storage capacity of S60TBs.

We chose as our dataset Sloan Digital Sky Survey (SDSS) Stripe 82 (Abazajian
2009; SDSS). The SDSS camera has 30 CCDs (2048x1489 pixels, 6MB FITS) in 5
bandpass filters which capture 6 parallel strips of sky at a time. Stripe 82 is a 30TB, 4
million image dataset gathered near the equatorial plane (+/ — 1.25° declination) with
an average coverage of ~75. In theory, coaddition at such coverage should yield a SNR
improvement of ~8.7x or an improved limiting magnitude of ~2.3 mags.

Our research has focused on the development of a massively parallel image coad-
dition system. Given the variety of uses of the term, we define image coaddition as the
process of background-subtracting, warping, PSF-matching, registering, and per-pixel
averaging a set of partially overlapping images into a final image called a mosaic. Much
of this process can be trivially parallelized since many of the steps are performed on the
input images prior to their incorporation into the mosaic.

3. Massively Parallel Data Processing

In recent years, a new approach to massively parallel data processing called cloud com-
puting has gained popularity. A cloud consists of a large network (1000s) of relatively
cheap commodity computers which is then made accessible over the internet. This eco-
nomical construction and internet-based access permit clouds to be offered as a generic
service wherein users program and submit their own jobs remotely and as third party
customers. One popular example of such a general-purpose cloud is Amazon’s EC2.

MapReduce is a framework for designing cloud-computing programs (Dean &
Ghemawat 2004) which encapsulates the cluster-related aspects of parallel computing,
namely intra-network communication, resiliency to task/node failure, etc.. This design
alleviates much of the complexity that parallel programing would otherwise impose. A
MapReduce program is performed in two sequential stages. The mapper stage performs
a parallel computation on the input data. The results are distributed to the reducer stage
which conglomerates the mapper outputs into the final job output. Hadoop is an open-
source implementation of MapReduce (Apache; White 2009) which has quickly grown
in popularity in large part due to is relatively easy learning curve and the large and
active online community of support.

Hadoop is programmed in Java. However, our research group has already devel-
oped a sophisticated C++ image-processing library. In order to access this library from
Hadoop, we use the Java Native Interface (JNI). Using JNI, our Java-based mapper and
reducer serve primarily to interface with the Hadoop framework and distributed file
system, but delegate most of the computational demands (image coaddition) to C++.

While many form of data-processing require processing the entire input dataset,
image coaddition does not. A guery (a bounds on the sky within which to generate a
mosaic) only covers the small subset of the input images. Therefore, we use a front-
end relational database containing metadata about the input images, including their sky
bounds. Our Hadoop job first performs a SQL query to retrieve the filenames of the
images which are relevant to the coaddition process. Those filenames then represent
the input to our MapReduce image coaddition system.

Author’s Final Checklist 3

Figure 1. This figure shows a single r-band frame on the left and a mosaic of 96
frames on the right (with a max coverage of ~75). The mosaic reveals more faint
sources as a result of coaddition.

4. Image Coaddition in Hadoop

In order to adapt image coaddition to Hadoop, we perform the initial processing on
each input image in a highly parallelized mapper stage. This processing includes
background-subtraction, warping to the final coordinate system, and PSF-matching.
The results are then sent to a single reducer which performs the per-pixel average and
generates the final mosaic. The serialized nature of the reducer is acceptable since the
overall computational demands are dominated by the steps performed in the mappers.

5. Results

Fig. 1 shows an example of image coaddition. A single r-band frame is shown on
the left and a mosaic of 96 frames is shown on the right. We would expect the point
source detection threshold for such a mosaic to be improved by ~2 mags over the single
frame and in Fig. 2 we observe that the expected improvement was achieved. On the
CluE cluster, our system was able to generate this mosaic in ~34 minutes. However,
many factors can influence this result: Hadoop restarts failed tasks, we did not enable
compiler optimizations, and our image-processing routines are still under development.
We estimate that when properly configured, this job time may drop well below 13
minutes, which corresponds to a per-image (mapper) processing time of <8 minutes.

6. Future Work

In the near future we hope to improve our coaddition system in many ways. We would
like to improve the overall algorithm by parallelizing the reducer, implementing bet-
ter memory management, and continuing to improve our image-processing routines.

4 Keith Wiley

Point Source Magnitude Detection

B Single
Bl Coadded

Count

15 16 17 18 19 20 21 22 23 24 25
Magnitude

Figure 2. This plot shows the point source magnitude detections achieved by the
single image and the mosaic shown in Fig. 1. We observe that the mosaic’s point
source detection threshold is improved by ~2 mags, as expected.

We intend to extend the query description to include time-bounded queries and to ulti-
mately perform automated object detection and classification on the mosaics. Finally,
we intend to wrap our system in more accessible scripting languages and perhaps to
offer it through a web-based graphic user interface (GUI).

7. Conclusions

This research demonstrates a massively-parallel cloud-computing based image coaddi-
tion system. We described Hadoop and our image coaddition system within Hadoop.
We then showed an example mosaic generated from SDSS Stripe 82 and demonstrated
that it achieved the expected improvement in point source detection threshold.

Acknowledgments. This work is funded by the NSF Cluster Exploratory (CIuE)
grant (IIS-0844580) and NASA grant 08-AISR08-0081. The cluster is maintained by
IBM and Google. We thank them for their continued support. We further wish to thank
both the LSST group in the astronomy department and the database research group in
the computer science department at the University of Washington.

References

Abazajian, et. al. 2009, The Astrophysical Journal Supplement, Vol. 182, pp. 543-558.

Apache, Apache Hadoop. http://hadoop.apache.org/, 2007.

Dean, J., & Ghemawat, S. 2004, in Sixth Symposium on Operating System Design and Imple-
mentation (San Francisco, CA, USA), OSDI’04.

SDSS, SDSS Stripe 82. http://www.sdss.org/legacy/stripe82.html,
http://www.sdss.org/dr7/coverage/sndr7.html, 2007.

White, T., Hadoop The Definitive Guide (1005 Gravenstein Highway North, Sebastopol, CA
95472: O’Reilly Media Inc.), Ist ed., 2009.

