
/42

Introduction to
Neuromorphic Computing
With an emphasis on General Vision’s
consumer-affordable CM1K chip

Keith Wiley
kwiley@keithwiley.com
http://keithwiley.com

Initiated: 20160412
Completed: 20160616

1

/42

Neuromorphic computing

Consists of numerous simple processors, which:
Process local storage
Process in massive parallel
Communicate only with local units
Aggregate results automatically
Consume extremely low power
And in some cases, scale modularly to increase performance.

*Compare with CPU and GPU.

2

A novel processor design,
The neuromorphic processing unit (NPU)*,
Inspired by the brain

/42

Von Neumann vs.
neuromorphic architectures

Von Neumann Neuromorphic
Small number of general and powerful
processing units

Larger number of specialized, weak
processing units, often constrained to
limited functions

Essentially serial except for mild
multicore options

Massively parallel

Processing and memory separated from
each other

Processing units only act on their own
localized memory

Process by moving data from memory
to CPU registers, computing, then
moving result back to memory

Process by a parallel data broadcast,
then local computing, then global
aggregation

High power requirements (50–200+ W) Low power requirements (.5–1 W)
Data-parallel algorithms scale linearly in
time with problem size by iterating over
the data

Data-parallel algorithms scale constantly
in time with problem size by parallel
broadcast and simultaneous processing

3

/42

GPGPU vs. 
neuromorphic architectures

GPGPU
(General Purpose Graphics Processing Unit)

Neuromorphic
GPUs only exist as part of larger overall
computers; they are not amenable to
the internet of things

Consist of single chips or minimal
electronics cards; ready for integration
into small devices

Cores often share memory, thereby
inducing access and transfer challenges

Processors and memory are coincident
and isolated from other procs/mems

High power requirements (200–500 W) Low power requirements (.5–1 W)
Despite massive parallelism, they are
still slower than NPUs above a certain
problem size

Faster than GPUs on larger datasets

4

/42

Neuromorphic terminology
5

NM chips are inspired by the brain.

They are essentially hardware implementations of neural networks*.

Consequently:
Processing units are colloquially called neurons.
Inter-unit communication is called a synapse.

*There is wide diversity amongst NM chips in the kinds of neural nets they offer.

/42

Neuromorphic applications
Brain-computer interfaces

Recognizing user motor intent
from EEG

Streaming data
Time-based patterns
Medical vital-sign tracking

Vision
Object detection/recognition/
tracking
Recognizing novel (never-
before-seen) objects
Visual anomaly detection
(security)
Autonomous vehicles
Home robotics (Roomba)
Medical imaging & analysis

6

Robotics
Chemical sensors
Audio & speech detection/filtering/
recognition
Natural language processing
Internet of Things

Appliances
Wearables
Phones

Distributed sensors
Sensor fusion
Anomaly/fraud/criminal detection
Personal assistants

/42

CM1K (General Vision): Simplified Radial Basis Function (RBF)
network of 1K neurons. Modularly connectable to 1M neurons.

Curie (Intel): Licenses CM1K design for 128 RBF neurons. Powers
Arduino 101.

TrueNorth (IBM, via DARPA SyNAPSE funding): 4K processors of
256 spiking neurons (1M total), 256M synapses, 70 mW. Lawrence
Livermore bought a 16-chip array for $1M (16M neurons, 4B
synapses, 2.5W).

Eyeriss (MIT/DARPA): convolutional NN,168 processors, 278 mW.

Zeroth (Qualcomm): included in Snapdragon 820 (cars, phones).

BrainScaleS (Human Brain Project): 1 wafer of 384 chips of 512
spiking neurons & 128K synapses: 200K neurons & 49M synapses.

SpiNNaker (HBP): 1M cores of 1K spiking neurons: 1B neurons.

Darwin (Hangzhou Dianzi U. & Zhejiang U.): 2K neurons & 4M
synapses, .84 W/MHz.

KnuPath (KnuEdge): 256 cores capable of independent
programming. Scalable to 512K chips (131M cores).

Neuromorphic options

http://general-vision.com/wp-content/uploads/2014/08/NeuroMem-CM1K-296x300.png
http://general-vision.com/wp-content/uploads/2014/09/BEYOND_SC.jpg
https://cdn-shop.adafruit.com/970x728/3033-00.jpg
http://www.johnarthur.org/tnchip.jpg
http://i.kinja-img.com/gawker-media/image/upload/s---C8RY0sU--/c_scale,fl_progressive,q_80,w_800/lmpksiuoutxslnzai30e.png
http://www.mit.edu/~sze/images/eyeriss_die_photo_with_annotation.jpg

Arduino w/ Curie

Eyeriss

CM1K

920 CM1Ks

TrueNorth

16 TrueNorths

7

/42

General Vision’s CM1K
1024 RBF neurons, 127 contexts*, 32768 categories†
Multiple chips combine up to 1M neurons
Processes 1K–1M neurons in constant time

Broadcast and classification/learning in ~10µs
.5 Watts per chip
Integrated 1D and 2D input interfaces for seamless 
audio/video processing
Accessible directly from Arduino, Raspberry Pi, Edison via the
BrainCard (expandable to 9 CM1K chips)
$80-$100 for the bare chip
$140+ integrated into various packages: 
usb sticks, electronic boards/cards, circuit pin 
socket modules, etc.

http://general-vision.com/wp-content/uploads/2014/04/CM1Kdie-300x298.jpg
http://www.cognimem.com/_images/_products/CogniStix-large.jpg
http://www.cognimem.com/_images/_products/CM1K-PGA69-large.jpg
http://general-vision.com/wp-content/uploads/2015/06/cart_BC.png

*Independent sets of neurons dedicated to unrelated classification tasks
†Num categories ≤ num neurons in any given configuration

8

/42

Restricted Coulomb Energy &
Radial Basis Function Networks

9

RCE is a training method for RBF and KNN networks.

*The CM1K supports both RBF and KNN behavior.

An RBF network classifies a pattern by:
Comparing it to a suite of previously observed and
remembered patterns (aka prototypes).
Selecting the prototype which is most similar to the new
pattern (assuming any are similar enough to “fire”).
Returning the category of the most similar firing prototype.

In a similar network, K-Nearest-Neighbors (KNN)*, all neurons
always fire and are returned sorted by similarity to the
observed pattern (from which the top ‘k’ may be selected).

/42

Radial Basis Function Networks
RBF networks partially cover the feature space with
hypershapes (finite subspaces) defined by a 
distance norm metric:

Euclidean:	 hyperspheres	 (circles)*
Manhattan (L1):	 hyperoctohedrons	(diamonds)†
Lsup (LMAX):	 hypercubes	 (squares)†

Learned prototypes indicate the centers of hypershapes.

A hypershape’s size is indicated by an active influence
field (AIF), a radius within which the prototype can
generalize a match.

If an observed pattern’s distance (via dist. norm) falls
within a neuron’s AIF for its prototype, the neuron fires.

A neuron’s response, as a function of the dist. norm, is
generally attenuated via a Gaussian.‡

*For simplicity, the CM1K does
not support the Euclidean dist.
norm.

†Since the CM1K calculates
byte-pair-differences, it uses
integer-digitized influence fields
(integer-stepped diamonds and
squares, as shown above).

‡For simplicity, the CM1K does
not perform Gaussian scaling of
the distance. Thus, its response
is linear with the dist. norm, i.e.,
triangular (in fact, response is
the dist. norm value).

10

/42

Restricted Coulomb Energy
A method for training RBF and KNN neural networks

Learning is incremental. Each new sample is evaluated in the
following manner:

Novel samples (those not matching current prototypes) are stored
in new neurons to increase coverage of the feature space (FS),
thereby reducing unknown categorizations (false negatives).

False positives (neurons of the wrong category that fire for a given
sample) shrink their AIFs to reduce subsequent false positives.

However, shrinking an AIF increases the risk of false negatives
by reducing the FS coverage!

Thus, there is a tradeoff in how many training samples to learn.

11

/42

CM1K Broadcast stage
How the CM1K classifies input signals

12

Patterns are ≤ 256 bytes. Each neuron holds a learned pattern.

Given an input vector, all neurons calculate their distance via one of two metrics:
Manhattan	 (aka L1,	 sum of per-byte differences).
Lsup	 (aka LMAX,	max single-byte difference).

Euclidean dist. norm and subsequent Gaussian attenuation are not offered due to computational overhead.

Two classifiers are offered:
K-Nearest Neighbors: All neurons fire.
Radial Basis Function (RBF) based on Restricted Coulomb Energy (RCE):

All neurons hold an active influence field (AIF), i.e., a firing threshold.
All neurons for which the distance < AIF fire.

All firing neurons are automatically sorted by distance so
the best match can be immediately retrieved. Alternatively,
the entire firing set may be investigated in sorted order.

/42

Following a broadcast, the network can optionally learn the previous input
vector (assuming its ground truth is available) in the following manner:

If no neurons fired, a new neuron is recruited and assigned
the previous input as its pattern with an AIF of PresetMaxAIF.

If some neurons fire:
Any neurons that fire with the correct category do nothing.
Any neurons that fire with the wrong category shrink their
AIFs enough to exclude the input vector.

If no neurons fire correctly, a new neuron is recruited and
assigned an AIF of min(PresetMaxAIF, all firing AIFs).

CM1K Learn stage
How the CM1K learns patterns (via RCE)

13

/42

RBF vs. perceptron neural nets
Perceptrons don’t need many neurons because they
divide the feature space (FS) into vast half-spaces
along hyperplanes (green).

(Multilayer perceptrons can carve the FS into finite
regions by combining neurons (often via multiple
layers (Fig. 2)), but they don’t have to (Fig. 1).

RBFs divide the FS into finite volumes (red & blue).

Consequently, RBFs often require many training
samples and learned prototypes to cover the FS and
avoid unknown classifications (Fig. 1), but it depends
on the category distribution in FS; in theory they can
be more efficient than perceptrons (Fig. 2)!

For this reason, RBFs have traditionally been
infeasible in classic von Neumann computers via
simulation; they are too large to process serially.

NM chips to the rescue: hardware parallelization!

Fig. 1

Fig. 2

14

/42

Neurons have a context in the range 1–127.

Contexts isolate the neurons into groups so that different
kinds of patterns can be learned and classified.

For example, a conglomerated data source may consist of:
Video stream
Audio stream
Temperature/pressure/tilt/accelerometer/etc. sensors
Various metadata

CM1K contexts
15

/42

Using CM1K contexts for 
multilayer RBF networks

16

Contexts can be used to create multilayer
RBF networks in the following way:

The input vector is learned and classified with some context (e.g., 1).

The sorted list of firing tuples [(category, distance),…]
represents a new input layer to be learned and classified by
a different set of neurons using a different context (e.g., 2).

The output of the final layer indicates
the network’s overall classification.

Multilayer networks obviously increase classification time
linearly with the number of layers since they are iterative.

/42

The emulator can simulate low-level functionality
(the CM1K’s data bus and registers), but it can also
simulate at a high-level, disregarding procedural
minutiae but yielding the same end result.

Obviously, the emulator suffers from serial processing,
but the purpose is to investigate the learning and
classification of the CM1K’s simplified RBF network.

Python CM1K Emulator

http://keithwiley.com/software/CM1K_emulator.shtml
https://github.com/kebwi/CM1K_emulator

17

I have written a CM1K emulator in Python to
investigate the chip’s classification performance.

/42

Evaluation datasets
18

MNIST handwritten digits 
(essentially black & white image data*)

AT&T Faces  
(grayscale photographic image data)

Iris 
(numerical data)

Mushroom 
(nominal data)

*The NIST data is truly B&W, but MNIST is resampled from NIST, resulting in interpolated gray levels.

/42

MNIST handwritten digits on
CM1K emulator

19

70,000 handwritten digits 0–9

Chance odds of 10-class classification: 10%

Divided into a 60k train set and 10k test set

250 “writers” in each set (disjoint between train/test)

8-bit grayscale

28×28 pixels

/42

MNIST on CM1K emulator
CM1K data preparation

In the hope of improved image
registration, optionally either:

Crop*  
(original bounding box is 20×20†)
Bounding-box-center 
(originally center-of-gravity-centered)

Resample to 16×16 to fit in the CM1K’s
256-byte pattern length.

1

2

3

1

2

3

3

3

20

*Results on the following slides represent the “cropping” method since that approach yielded the best performance.

†The previous slide described the images as 28×28. The MNIST images were generated by first scaling to a 20px
Bbox, then placing within a 28px frame such that centers-of-gravity reside at the center. In other words, the MNIST
data are already COG-centered, but since Bbox-centering might offer better modeling performance, I tried both.

/42

MNIST on CM1K emulator
Evaluation parameters

Various training set sizes: 5k–60k

When classification is unknown 
(no neurons fire), increment over 
increasingly distant translations  
to find a registration with the 
network’s learned prototypes.

Euclidean distance function

Mode-voting classification when uncertain 
(i.e., when neurons of varying category fire)

21

Cardinal
1 space

Cardinal
2 spaces

Diagonal KnightNone

/42

Active Influence Field

0

3000

6000

9000

12000

15000

18000

1 10 100 1000 10000 100000

mean
median

MNIST on CM1K emulator
Classification

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

(>1) Uncertain
(1) Identified
(0) Unclassified

Accuracy

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

Correct
Wrong
Unclassified

Committed Neurons

0
2048
4096
6144
8192

10240
12288
14336

Training set size

0 5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

The Y-axis gridlines
indicate the number of
required CM1K chips.

BrainCard max

*MNIST classification can only exhibit true positives
(correct), false positives (wrong), and false negatives
(unclassified). True negatives have no meaning for MNIST.

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0
Linear X-axis

Chance accuracy
10%

Error bars indicate 95% CI

22

*

/42

MNIST on CM1K emulator
Combined accuracy and
classification distribution

Accuracy & Classification

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

Correct uncer
Correct ident
Wrong uncer
Wrong ident
Unclassified

What is the distribution of
identified and uncertain

classifications within each of
correct and wrong predictions?

Accuracy

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

Correct
Wrong
Unclassified

Classification

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

(>1) Uncertain
(1) Identified
(0) Unclassified

Chance accuracy
10%

23

/42

MNIST on CM1K emulator
Translating test images to improve registration

When a classification is unknown (no
neurons fire), increment over increasingly
distant translations to find a registration
with the network’s learned prototypes.

Translation set in which a
classification was made

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

0
1
2
3
4

Classification w/ translation sets

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

(>1) Uncertain
(1) Identified
(0) Unclassified

Classification w/o translation sets

0%

25%

50%

75%

100%

5k 10
k

15
k

20
k

25
k

30
k

35
k

40
k

45
k

50
k

55
k

60
k

24

0 1 2 3 4
Cardinal
1 space

Cardinal
2 spaces

Diagonal KnightNone

Translation sets

/42

Precision

70%
75%
80%
85%
90%
95%

100%

5k 20k 35k 50k

No translations
Translations

Recall

5k 20k 35k 50k

MNIST on CM1K emulator
Translating test images to improve registration

∴Considering translations of an image:
1. Virtually eliminates unclassifications 

 (yellow bars)
2. Improves accuracy 

 (green ÷ total) (or simply green bar height)
3. Curiously, it hurts precision  

 (green ÷ (green + red))
4. Improves recall 

 (green ÷ (green + yellow))

Accuracy w/o translations

0%

25%

50%

75%

100%

5k 15k 25k 35k 45k 55k

Correct
Wrong
Unclassified

43

1

2

3

4

Accuracy w/ translations

5k 15k 25k 35k 45k 55k

1

2

When a classification is unknown (no
neurons fire), increment over increasingly
distant translations to find a registration
with the network’s learned prototypes.

25

0 1 2 3 4
Cardinal
1 space

Cardinal
2 spaces

Diagonal KnightNone

Translation sets

/42

MNIST on CM1K emulator
Comparing CM1K’s L1 to Euclidean distance function

Remember: the RCE/RBF model uses a PresetMaxAIF parameter,
the max. possible AIF assigned to a newly recruited neuron.

Any given neuron’s AIF is subsequently shrunk during training to reduce false
positives (i.e., when a neuron of category 1 fires for a sample of category 2).

The CM1K’s default PresetMaxAIF is 16384* (configurable), i.e., ~25% of the
max. sample-to-prototype distance (255 max-byte-dif × 256 bytes = 65280).

A Euclidean distance norm has a max. distance of √(2552 × 256) = 4,080.
So, if there is some rationale to the 25% default, then perhaps
PresetMaxAIF for a Euclidean dist. norm should be ~25%: 1024.

So, I tested with both 1024 and 4096.

*Curiously, switching the CM1K to the Lsup norm doesn’t alter the PresetMaxAIF
parameter even though Lsup’s max. sample-to-prototype distance is a measly 255.

26

/42

MNIST on CM1K emulator
Comparing CM1K’s L1 to Euclidean distance function

0%

25%

50%

75%

100%

5k 20k 35k 50k

Correct
Wrong
Unclassified

L1

0%

25%

50%

75%

100%

5k 20k 35k 50k

(>1) Uncertain
(1) Identified
(0) Unclassified

∴A Euclidean distance function:
1. Recruits more neurons
2. Has fewer uncertain classifications
3. Has fewer wrong classifications
4. Improves precision
5. Has little effect on recall

Committed Neurons

0
4096
8192

12288

0 10k 20k 30k 40k 50k 60k

L1
Euc 1k
Euk 4k

Euclidean 1k

5k 20k 35k 50k

5k 20k 35k 50k

1

Precision

50%
60%
70%
80%
90%

100%

5k 20k 35k 50k

Recall

5k 20k 35k 50k

4 5

1

2

3

4

5

Euclidean 4k

5k 20k 35k 50k

5k 20k 35k 50k

3

2

Chance accuracy
10%

Classification

Accuracy

27

/42

MNIST on CM1K emulator
Mode-voting to resolve uncertain classifications

Whenever multiple neurons fire with varying categories, take the most-
voted category (mode-voting), not the strongest firing neuron (winner-
take-all). If the mode is not unique, resort to winner-take-all.

∴The benefit of resolving uncertain classifications by mode-voting
instead of winner-take-all is consistently positive but negligible.

Note that voting risks
“wronging” a correct winner-
take-all classification.

A negative plot value implies
that more correct winner-take-
all values were “wronged” by
mode-voting than vice versa.

Mode-voting net benefit

C
or

re
ct

ed
 -

w
ro

ng
ed

-1%

-0.75%

-0.5%

-0.25%

0%

0.25%

0.5%

0.75%

1%

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k

L1 w/o trans sets
Euc 1k w/o trans sets
Euc 4k w/o trans sets
L1 w/ trans sets
Euc 1k w/ trans sets
Euc 4k w/ trans sets
Zero

28

/42

MNIST on CM1K vs.  
MNIST by other models

MNIST results are usually reported in terms of error rate (all incorrect
classifications, in which I include RBF unclassifications). The lowest
error rate I achieved with the CM1K emulator was 12.2%*.

Yann LeCun maintains the primary MNIST website, which includes
numerous modeling results. http://yann.lecun.com/exdb/mnist/

Error rates across 69 models vary (obviously), but are generally 1–2%
with lows ~.2% and highs ~7–8% (and 12.0% the worst), including:

An RBF: 3.6% error
A few 16px subsampled examples:

KNN: 1.1% error
Convolutional net: 1.7% error

Why is the CM1K underperforming so much?

29

*Cropping, translation sets, mode-voting

/42

MNIST on CM1K vs.  
MNIST by other models

30

I only tested with the first 1000 images of the MNIST test set. If
that subset is more difficult to classify than the other 9000, then
my results suffered unfairly—but this seems doubtful.

RBF network described by LeCun:
1000 Gaussian RBF neurons
28px input resolution
2nd layer of 1000 neurons evenly divided into 100 per category
Training by K-means, not RCE
Weighted connections

Perhaps CM1K performance could be improved via multiple
layers, or by tiling to accommodate greater image resolution, or
by giving COG-centering another chance…
…but that will have to wait for another day.

/42

AT&T Faces on CM1K emulator
40 people, 10 pictures each

Chance odds of 40-class
classification: 2.5%

8-bit grayscale
92×112 pixels

Cropped to 92×92
Downsampled to 16×16

This is the entire dataset, albeit scaled to fit.

31

/42

Faces on CM1K emulator
Error bars indicate 95% CI

Correct

0%

25%

50%

75%

100%

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

2.5%
Chance

Wrong

0%

5%

10%

15%

20%

25%

30%

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

Classification

0%

25%

50%

75%

100%

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

(>1) Uncertain
(1) Identified
(0) Unclassified

0%

25%

50%

75%

100%

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

Correct
Wrong
Unclassified

Committed Neurons

0

40

80

120

160

Train set size

0 40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

32

/42

Faces on CM1K emulator
Committed neuron distribution

Percentage of committed neurons per category

Pe
rc

en
ta

ge
 o

f c
om

m
itt

ed
 n

eu
ro

ns

0%

1%

2%

3%

4%

5%

6%

Category (which person from the dataset)

1 4 7 10 13 16 19 22 25 28 31 34 37 40

40 train set size 80
120 160
200 240
280 320
360

Error bars indicate 95% CI
(only included for train set sizes 80 and 360 for clarity)

RCE/RBF training can accumulate a wide
distribution of prototypes across the categories.

Subject #10 produces far more prototypes than
#22. This implies that later training photos of #10
fall outside the AIFs of previous photos of #10,
while later photos of #22 fall inside the AIFs of
previous photos of #22.

At least two explanations:
#10’s photos have higher variance than #22’s.
#22 resides in an isolated region of the feature
space, suffering little overlap with other
subjects, thereby maintaining large AIFs, while
#10’s region overlaps some other subject’s
region, thus shrinking both of their respective
AIFs during training.

There is no ordering over the 40 categories (the people). They are ordered in the plot as in the dataset. Train
set size 40 looks different because it recruited precisely one instance per class. Thus it exhibits no variance.

33

/42

Iris on CM1K emulator
150 instances:

3 classes of 50 instances each
Chance odds of 3-class classification: 
33.3%

4 measurements provide a 4D feature vector 
(cm to one decimal point, i.e., mm precision):

sepal length
sepal width
petal length
petal width

Goal: classify or predict a flower’s class from its 4D feature vector

Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Class

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
7.0 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
6.3 3.3 6.0 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3.0 5.9 2.1 Iris-virginica
… … … … …

34

/42

Iris on CM1K emulator
CM1K data preparation

Drop each feature value's decimal point, thereby converting
fractional cm at 1/10th precision into integer mm. All Iris values are
below 256mm, and therefore fit in a single byte.

Arrange the four features in a four-element array, i.e., of the
CM1K’s 256 available bytes for pattern representation, use only
four bytes for the Iris classification problem.

The maximum theoretical pattern-pair-distance will then be 1020
(255x4), but the range-bounded max. distance is only 143 since
the features’ various min and max values are > 0 and < 256.

35

/42

Iris on CM1K emulator

Max AIF 128

0%
25%
50%
75%

100%

15 45 75 10
5

13
5

(>1) Uncertain
(1) Identified
(0) Unclassified

64

15 45 75 10
5

13
5

32

15 45 75 10
5

13
5

16

15 45 75 10
5

13
5

8

15 45 75 10
5

13
5

4

15 45 75 10
5

13
5

2

15 45 75 10
5

13
5

The RCE/RBF parameter PresetMaxAIF limits the
AIF assigned to a newly recruited neuron, thereby
limiting the prototype’s generalization to classify
new patterns.  
 
Varying PresetMaxAIF can significantly alter the
network’s training and subsequent classification.

Committed Neurons

0
25
50
75

100
125
150

Train set size

15 30 45 60 75 90 105 120 135

Max AIF 2
4
8
16
32
64
128

Classification

0%
25%
50%
75%

100%
Correct
Wrong
UnclassifiedAccuracy

Chance accuracy
33.3%

36

/42

Iris on CM1K emulator
Precision, recall, F1 score F1 Score

0%

20%

40%

60%

80%

100% 128
64
32
16
8
4
2

F1 Score

80%

85%

90%

95%

100%

Error bars indicate 95% CI

15 30 45 60 75 90 105 120 135

15 30 45 60 75 90 105 120 135

∴On the Iris dataset (max theoretical pattern-
pair-distance = 143), the CM1K performs
best when trained with a PresetMaxAIF of 16.

F1 Score
Train set size

15 30 45 60 75 90 105 120 135
128 0.84 0.90 0.89 0.94 0.93 0.90 0.94 0.96 0.93

64 0.83 0.90 0.88 0.93 0.93 0.92 0.93 0.96 0.96
32 0.91 0.90 0.91 0.94 0.94 0.95 0.94 0.94 0.95
16 0.91 0.94 0.94 0.96 0.94 0.95 0.96 0.98 0.97

8 0.63 0.79 0.81 0.85 0.90 0.89 0.90 0.92 0.94
4 0.23 0.24 0.33 0.46 0.53 0.57 0.63 0.69 0.75
2 0.03 0.08 0.11 0.11 0.13 0.18 0.16 0.13 0.13

Pr
es

et
 M

ax
 A

IF

37

/42

Mushroom on CM1K emulator
8124 instances:

2 classes: edible (4208), poisonous (3916)
Chance odds of 2-class classification:
50%
Best guess odds: 
51.80% (4208 ÷ 8124)

22 nominal (i.e., categorical) features provide
a 22D feature vector:

shape
texture
color
etc.

Goal: classify or predict a mushroom’s
edibility or poisonousness from its 22D
feature vector

class p e e p e e e e p e …
cap-shape x x b x x x b b x b …
cap-surface s s s y s y s y y s …
cap-color n y w w g y w w w y …
bruises t t t t f t t t t t …
odor p a l p n a a l p a …
gill-attachment f f f f f f f f f f …
gill-spacing c c c c w c c c c c …
gill-size n b b n b b b b n b …
gill-color k k n n k n g n p g …
stalk-shape e e e e t e e e e e …
stalk-root e c c e e c c c e c …
stalk-surface-above-ring s s s s s s s s s s …
stalk-surface-below-ring s s s s s s s s s s …
stalk-color-above-ring w w w w w w w w w w …
stalk-color-below-ring w w w w w w w w w w …
veil-type p p p p p p p p p p …
veil-color w w w w w w w w w w …
ring-number o o o o o o o o o o …
ring-type p p p p e p p p p p …
spore-print-color k n n k n k k n k k …
population s n n s a n n s v s …
habitat u g m u g g m m g m …

38

/42

Mushroom on CM1K emulator
CM1K data preparation

The 22 features can assume a total of 126 nominal values, which
thankfully fits in the CM1K’s 256-byte pattern length.

Convert a given instance to a 126-element boolean array
containing precisely 22 True values variously interspersed.

Convert the boolean array to a byte array where each byte is
either 0 or 1 (i.e., discard the high 7 bits).

Of the CM1K’s 256 available bytes for pattern representation, use
only 126, and of those use only the lowest bit each.

The maximum theoretical pattern-pair-distance will then be 44,
e.g., if all 22 features differ in value.

39

/42

Mushroom on CM1K emulator

Max AIF 64

0%
25%
50%
75%

100%

81
2

24
37

40
62

56
87

73
12

(>1) Uncertain
(1) Identified
(0) Unclassified

32

81
2

24
37

40
62

56
87

73
12

16

81
2

24
37

40
62

56
87

73
12

8

81
2

24
37

40
62

56
87

73
12

6

81
2

24
37

40
62

56
87

73
12

4

81
2

24
37

40
62

56
87

73
12

Committed Neurons

0
300
600
900

1200
1500
1800

Train set size

81
2

16
25

24
37

32
50

40
62

48
74

56
87

64
99

73
12

Max AIF 4
6
8
16
32
64

Classification

0%
25%
50%
75%

100%
Correct
Wrong
Unclassified

Accuracy

Chance accuracy
50%

It’s interesting that the number of
committed neurons is consistent across
Max AIFs from 64–8, and then rapidly
grows as Max AIF goes to 6 and finally 4.

40

/42

Mushroom on CM1K emulator
Precision, recall, F1 score Error bars indicate 95% CI

812 1625 2437 3250 4062 4874 5687 6499 7312

6499 7312

F1 Score
Train set size

812 1625 2437 3250 4062 4874 5687 6499 7312
64 0.45 0.42 0.44 0.53 0.54 0.62 0.71 0.95 0.99
32 0.45 0.42 0.44 0.53 0.54 0.62 0.69 0.94 0.99
16 0.55 0.47 0.62 0.55 0.88 0.89 0.85 0.99 1.00

8 0.38 0.42 0.46 0.50 0.59 0.69 0.60 0.97 0.99
6 0.29 0.36 0.40 0.45 0.48 0.56 0.49 0.93 0.99
4 0.18 0.21 0.27 0.29 0.32 0.38 0.30 0.71 0.91

Pr
es

et
 M

ax
 A

IF

F1 Score

0%

25%

50%

75%

100% 64
32
16
8
6
4

F1 Score

90%

92%

94%

96%

98%

100%

∴On the Mushroom dataset (max theoretical
pattern-pair-distance = 44), the CM1K performs
best when trained with a PresetMaxAIF of 16.

41

/42

Conclusion
Neuromorphic computing consists of chip architectures that implement
hardware-parallelized neural networks, drawing basic design inspiration from
the organization of the brain.

Fundamental (i.e., Big-O) improvements in performance (constant time
scaling with problem size where classical neural network simulations exhibit
linear slowdown).

2–3 orders-of-magnitude improvement in energy efficiency, enabling entirely
new applications, such as bringing pattern recognition to mobile devices.

But, it is a nascent technology. Commercial designs are either:

Affordable but of modest neuron capacity and modeling complexity
(CM1K, Intel Curie).

Less affordable and still of limited complexity, but offering greater network
capacity (modularly networked CM1Ks).

Far less affordable, or less available to the public, or still in research stages
—but of greater computational complexity and generality (IBM TrueNorth,
MIT Eyeriss, Qualcomm Zeroth, KnuPath).

42

