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Neuromorphic computing

Consists of numerous simple processors, which: 
Process local storage 
Process in massive parallel 
Communicate only with local units 
Aggregate results automatically 
Consume extremely low power 
And in some cases, scale modularly to increase performance.

*Compare with CPU and GPU.
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A novel processor design, 
The neuromorphic processing unit (NPU)*, 
Inspired by the brain
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Von Neumann vs. 
neuromorphic architectures

Von Neumann Neuromorphic
Small number of general and powerful 
processing units

Larger number of specialized, weak 
processing units, often constrained to 
limited functions

Essentially serial except for mild 
multicore options

Massively parallel

Processing and memory separated from 
each other

Processing units only act on their own 
localized memory

Process by moving data from memory 
to CPU registers, computing, then 
moving result back to memory

Process by a parallel data broadcast, 
then local computing, then global 
aggregation

High power requirements (50–200+ W) Low power requirements (.5–1 W)
Data-parallel algorithms scale linearly in 
time with problem size by iterating over 
the data

Data-parallel algorithms scale constantly 
in time with problem size by parallel 
broadcast and simultaneous processing

3
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GPGPU vs. 
neuromorphic architectures

GPGPU 
(General Purpose Graphics Processing Unit)

Neuromorphic
GPUs only exist as part of larger overall 
computers; they are not amenable to 
the internet of things

Consist of single chips or minimal 
electronics cards; ready for integration 
into small devices

Cores often share memory, thereby 
inducing access and transfer challenges

Processors and memory are coincident 
and isolated from other procs/mems

High power requirements (200–500 W) Low power requirements (.5–1 W)
Despite massive parallelism, they are 
still slower than NPUs above a certain 
problem size

Faster than GPUs on larger datasets

4
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Neuromorphic terminology
5

NM chips are inspired by the brain. 

They are essentially hardware implementations of neural networks*. 

Consequently: 
Processing units are colloquially called neurons. 
Inter-unit communication is called a synapse.

*There is wide diversity amongst NM chips in the kinds of neural nets they offer.
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Neuromorphic applications
Brain-computer interfaces 

Recognizing user motor intent 
from EEG 

Streaming data 
Time-based patterns 
Medical vital-sign tracking 

Vision 
Object detection/recognition/
tracking 
Recognizing novel (never-
before-seen) objects 
Visual anomaly detection 
(security) 
Autonomous vehicles 
Home robotics (Roomba) 
Medical imaging & analysis
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Robotics 
Chemical sensors 
Audio & speech detection/filtering/
recognition 
Natural language processing 
Internet of Things 

Appliances 
Wearables 
Phones 

Distributed sensors 
Sensor fusion 
Anomaly/fraud/criminal detection 
Personal assistants
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CM1K (General Vision): Simplified Radial Basis Function (RBF) 
network of 1K neurons. Modularly connectable to 1M neurons. 

Curie (Intel): Licenses CM1K design for 128 RBF neurons. Powers 
Arduino 101. 

TrueNorth (IBM, via DARPA SyNAPSE funding): 4K processors of 
256 spiking neurons (1M total), 256M synapses, 70 mW. Lawrence 
Livermore bought a 16-chip array for $1M (16M neurons, 4B 
synapses, 2.5W). 

Eyeriss (MIT/DARPA): convolutional NN,168 processors, 278 mW. 

Zeroth (Qualcomm): included in Snapdragon 820 (cars, phones). 

BrainScaleS (Human Brain Project): 1 wafer of 384 chips of 512 
spiking neurons & 128K synapses: 200K neurons & 49M synapses. 

SpiNNaker (HBP): 1M cores of 1K spiking neurons: 1B neurons. 

Darwin (Hangzhou Dianzi U. & Zhejiang U.): 2K neurons & 4M 
synapses, .84 W/MHz. 

KnuPath (KnuEdge): 256 cores capable of independent 
programming. Scalable to 512K chips (131M cores).

Neuromorphic options

http://general-vision.com/wp-content/uploads/2014/08/NeuroMem-CM1K-296x300.png 
http://general-vision.com/wp-content/uploads/2014/09/BEYOND_SC.jpg 
https://cdn-shop.adafruit.com/970x728/3033-00.jpg 
http://www.johnarthur.org/tnchip.jpg 
http://i.kinja-img.com/gawker-media/image/upload/s---C8RY0sU--/c_scale,fl_progressive,q_80,w_800/lmpksiuoutxslnzai30e.png 
http://www.mit.edu/~sze/images/eyeriss_die_photo_with_annotation.jpg

Arduino w/ Curie

Eyeriss

CM1K

920 CM1Ks

TrueNorth

16 TrueNorths
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General Vision’s CM1K
1024 RBF neurons, 127 contexts*, 32768 categories† 
Multiple chips combine up to 1M neurons 
Processes 1K–1M neurons in constant time 

Broadcast and classification/learning in ~10µs 
.5 Watts per chip 
Integrated 1D and 2D input interfaces for seamless 
audio/video processing 
Accessible directly from Arduino, Raspberry Pi, Edison via the 
BrainCard (expandable to 9 CM1K chips) 
$80-$100 for the bare chip 
$140+ integrated into various packages: 
usb sticks, electronic boards/cards, circuit pin 
socket modules, etc.

http://general-vision.com/wp-content/uploads/2014/04/CM1Kdie-300x298.jpg 
http://www.cognimem.com/_images/_products/CogniStix-large.jpg 
http://www.cognimem.com/_images/_products/CM1K-PGA69-large.jpg 
http://general-vision.com/wp-content/uploads/2015/06/cart_BC.png

*Independent sets of neurons dedicated to unrelated classification tasks 
†Num categories ≤ num neurons in any given configuration
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Restricted Coulomb Energy & 
Radial Basis Function Networks

9

RCE is a training method for RBF and KNN networks.

*The CM1K supports both RBF and KNN behavior.

An RBF network classifies a pattern by: 
Comparing it to a suite of previously observed and 
remembered patterns (aka prototypes). 
Selecting the prototype which is most similar to the new 
pattern (assuming any are similar enough to “fire”). 
Returning the category of the most similar firing prototype.

In a similar network, K-Nearest-Neighbors (KNN)*, all neurons 
always fire and are returned sorted by similarity to the 
observed pattern (from which the top ‘k’ may be selected).
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Radial Basis Function Networks
RBF networks partially cover the feature space with 
hypershapes (finite subspaces) defined by a 
distance norm metric: 

Euclidean:	 hyperspheres	 (circles)* 
Manhattan (L1):	 hyperoctohedrons	(diamonds)† 
Lsup (LMAX):	 hypercubes	 (squares)† 

Learned prototypes indicate the centers of hypershapes. 

A hypershape’s size is indicated by an active influence 
field (AIF), a radius within which the prototype can 
generalize a match. 

If an observed pattern’s distance (via dist. norm) falls 
within a neuron’s AIF for its prototype, the neuron fires. 

A neuron’s response, as a function of the dist. norm, is 
generally attenuated via a Gaussian.‡

*For simplicity, the CM1K does 
not support the Euclidean dist. 
norm. 

†Since the CM1K calculates 
byte-pair-differences, it uses 
integer-digitized influence fields 
(integer-stepped diamonds and 
squares, as shown above). 

‡For simplicity, the CM1K does 
not perform Gaussian scaling of 
the distance. Thus, its response 
is linear with the dist. norm, i.e., 
triangular (in fact, response is 
the dist. norm value).

10
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Restricted Coulomb Energy 
A method for training RBF and KNN neural networks

Learning is incremental. Each new sample is evaluated in the 
following manner: 

Novel samples (those not matching current prototypes) are stored 
in new neurons to increase coverage of the feature space (FS), 
thereby reducing unknown categorizations (false negatives). 

False positives (neurons of the wrong category that fire for a given 
sample) shrink their AIFs to reduce subsequent false positives. 

However, shrinking an AIF increases the risk of false negatives 
by reducing the FS coverage! 

Thus, there is a tradeoff in how many training samples to learn.

11
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CM1K Broadcast stage 
How the CM1K classifies input signals

12

Patterns are ≤ 256 bytes. Each neuron holds a learned pattern.

Given an input vector, all neurons calculate their distance via one of two metrics: 
Manhattan	 (aka L1,	 sum of per-byte differences). 
Lsup	 (aka LMAX,	max single-byte difference). 

Euclidean dist. norm and subsequent Gaussian attenuation are not offered due to computational overhead.

Two classifiers are offered: 
K-Nearest Neighbors: All neurons fire. 
Radial Basis Function (RBF) based on Restricted Coulomb Energy (RCE): 

All neurons hold an active influence field (AIF), i.e., a firing threshold. 
All neurons for which the distance < AIF fire.

All firing neurons are automatically sorted by distance so 
the best match can be immediately retrieved. Alternatively, 
the entire firing set may be investigated in sorted order.
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Following a broadcast, the network can optionally learn the previous input 
vector (assuming its ground truth is available) in the following manner:

If no neurons fired, a new neuron is recruited and assigned 
the previous input as its pattern with an AIF of PresetMaxAIF.

If some neurons fire: 
Any neurons that fire with the correct category do nothing. 
Any neurons that fire with the wrong category shrink their 
AIFs enough to exclude the input vector.

If no neurons fire correctly, a new neuron is recruited and 
assigned an AIF of min(PresetMaxAIF, all firing AIFs).

CM1K Learn stage 
How the CM1K learns patterns (via RCE)

13
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RBF vs. perceptron neural nets
Perceptrons don’t need many neurons because they 
divide the feature space (FS) into vast half-spaces 
along hyperplanes (green). 

(Multilayer perceptrons can carve the FS into finite 
regions by combining neurons (often via multiple 
layers (Fig. 2)), but they don’t have to (Fig. 1). 

RBFs divide the FS into finite volumes (red & blue). 

Consequently, RBFs often require many training 
samples and learned prototypes to cover the FS and 
avoid unknown classifications (Fig. 1), but it depends 
on the category distribution in FS; in theory they can 
be more efficient than perceptrons (Fig. 2)! 

For this reason, RBFs have traditionally been 
infeasible in classic von Neumann computers via 
simulation; they are too large to process serially. 

NM chips to the rescue: hardware parallelization!

Fig. 1

Fig. 2

14
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Neurons have a context in the range 1–127.

Contexts isolate the neurons into groups so that different 
kinds of patterns can be learned and classified.

For example, a conglomerated data source may consist of: 
Video stream 
Audio stream 
Temperature/pressure/tilt/accelerometer/etc. sensors 
Various metadata

CM1K contexts
15
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Using CM1K contexts for 
multilayer RBF networks

16

Contexts can be used to create multilayer 
RBF networks in the following way:

The input vector is learned and classified with some context (e.g., 1).

The sorted list of firing tuples [(category, distance),…] 
represents a new input layer to be learned and classified by 
a different set of neurons using a different context (e.g., 2).

The output of the final layer indicates 
the network’s overall classification.

Multilayer networks obviously increase classification time 
linearly with the number of layers since they are iterative.
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The emulator can simulate low-level functionality 
(the CM1K’s data bus and registers), but it can also 
simulate at a high-level, disregarding procedural 
minutiae but yielding the same end result.

Obviously, the emulator suffers from serial processing, 
but the purpose is to investigate the learning and 
classification of the CM1K’s simplified RBF network.

Python CM1K Emulator

http://keithwiley.com/software/CM1K_emulator.shtml 
https://github.com/kebwi/CM1K_emulator

17

I have written a CM1K emulator in Python to 
investigate the chip’s classification performance.
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Evaluation datasets
18

MNIST handwritten digits 
(essentially black & white image data*) 

AT&T Faces  
(grayscale photographic image data) 

Iris 
(numerical data) 

Mushroom 
(nominal data)

*The NIST data is truly B&W, but MNIST is resampled from NIST, resulting in interpolated gray levels.
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MNIST handwritten digits on 
CM1K emulator

19

70,000 handwritten digits 0–9 

Chance odds of 10-class classification: 10% 

Divided into a 60k train set and 10k test set 

250 “writers” in each set (disjoint between train/test) 

8-bit grayscale 

28×28 pixels
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MNIST on CM1K emulator 
CM1K data preparation

In the hope of improved image 
registration, optionally either: 

Crop*        
(original bounding box is 20×20†) 
Bounding-box-center 
(originally center-of-gravity-centered) 

Resample to 16×16 to fit in the CM1K’s 
256-byte pattern length.

1

2

3

1

2

3

3

3

20

*Results on the following slides represent the “cropping” method since that approach yielded the best performance. 

†The previous slide described the images as 28×28. The MNIST images were generated by first scaling to a 20px 
Bbox, then placing within a 28px frame such that centers-of-gravity reside at the center. In other words, the MNIST 
data are already COG-centered, but since Bbox-centering might offer better modeling performance, I tried both.
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MNIST on CM1K emulator 
Evaluation parameters

Various training set sizes: 5k–60k 

When classification is unknown 
(no neurons fire), increment over 
increasingly distant translations  
to find a registration with the 
network’s learned prototypes. 

Euclidean distance function 

Mode-voting classification when uncertain 
(i.e., when neurons of varying category fire)

21
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Active Influence Field
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MNIST on CM1K emulator 
Combined accuracy and 
classification distribution

Accuracy & Classification
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MNIST on CM1K emulator 
Translating test images to improve registration

When a classification is unknown (no 
neurons fire), increment over increasingly 
distant translations to find a registration 
with the network’s learned prototypes.

Translation set in which a 
classification was made
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Precision
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MNIST on CM1K emulator 
Translating test images to improve registration

∴Considering translations of an image: 
1. Virtually eliminates unclassifications 

     (yellow bars) 
2. Improves accuracy 

     (green ÷ total) (or simply green bar height) 
3. Curiously, it hurts precision  

     (green ÷ (green + red)) 
4. Improves recall 

     (green ÷ (green + yellow))
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When a classification is unknown (no 
neurons fire), increment over increasingly 
distant translations to find a registration 
with the network’s learned prototypes.
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MNIST on CM1K emulator 
Comparing CM1K’s L1 to Euclidean distance function

Remember: the RCE/RBF model uses a PresetMaxAIF parameter, 
the max. possible AIF assigned to a newly recruited neuron.

Any given neuron’s AIF is subsequently shrunk during training to reduce false 
positives (i.e., when a neuron of category 1 fires for a sample of category 2).

The CM1K’s default PresetMaxAIF is 16384* (configurable), i.e., ~25% of the 
max. sample-to-prototype distance (255 max-byte-dif × 256 bytes = 65280).

A Euclidean distance norm has a max. distance of √(2552 × 256) = 4,080. 
So, if there is some rationale to the 25% default, then perhaps 
PresetMaxAIF for a Euclidean dist. norm should be ~25%: 1024.

So, I tested with both 1024 and 4096.

*Curiously, switching the CM1K to the Lsup norm doesn’t alter the PresetMaxAIF 
parameter even though Lsup’s max. sample-to-prototype distance is a measly 255.

26



/42

MNIST on CM1K emulator 
Comparing CM1K’s L1 to Euclidean distance function
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MNIST on CM1K emulator 
Mode-voting to resolve uncertain classifications

Whenever multiple neurons fire with varying categories, take the most-
voted category (mode-voting), not the strongest firing neuron (winner-
take-all). If the mode is not unique, resort to winner-take-all.

∴The benefit of resolving uncertain classifications by mode-voting 
instead of winner-take-all is consistently positive but negligible.

Note that voting risks 
“wronging” a correct winner-
take-all classification. 

A negative plot value implies 
that more correct winner-take-
all values were “wronged” by 
mode-voting than vice versa.
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MNIST on CM1K vs.  
MNIST by other models

MNIST results are usually reported in terms of error rate (all incorrect 
classifications, in which I include RBF unclassifications). The lowest 
error rate I achieved with the CM1K emulator was 12.2%*. 

Yann LeCun maintains the primary MNIST website, which includes 
numerous modeling results. http://yann.lecun.com/exdb/mnist/ 

Error rates across 69 models vary (obviously), but are generally 1–2% 
with lows ~.2% and highs ~7–8% (and 12.0% the worst), including: 

An RBF: 3.6% error 
A few 16px subsampled examples: 

KNN: 1.1% error 
Convolutional net: 1.7% error 

Why is the CM1K underperforming so much?

29

*Cropping, translation sets, mode-voting
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MNIST on CM1K vs.  
MNIST by other models

30

I only tested with the first 1000 images of the MNIST test set. If 
that subset is more difficult to classify than the other 9000, then 
my results suffered unfairly—but this seems doubtful.  

RBF network described by LeCun: 
1000 Gaussian RBF neurons 
28px input resolution 
2nd layer of 1000 neurons evenly divided into 100 per category 
Training by K-means, not RCE 
Weighted connections

Perhaps CM1K performance could be improved via multiple 
layers, or by tiling to accommodate greater image resolution, or 
by giving COG-centering another chance… 
…but that will have to wait for another day.
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AT&T Faces on CM1K emulator
40 people, 10 pictures each 

Chance odds of 40-class 
classification: 2.5% 

8-bit grayscale 
92×112 pixels 

Cropped to 92×92 
Downsampled to 16×16

This is the entire dataset, albeit scaled to fit.

31
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Faces on CM1K emulator
Error bars indicate 95% CI
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Faces on CM1K emulator 
Committed neuron distribution

Percentage of committed neurons per category
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Error bars indicate 95% CI 
(only included for train set sizes 80 and 360 for clarity)

RCE/RBF training can accumulate a wide 
distribution of prototypes across the categories. 

Subject #10 produces far more prototypes than 
#22. This implies that later training photos of #10 
fall outside the AIFs of previous photos of #10, 
while later photos of #22 fall inside the AIFs of 
previous photos of #22. 

At least two explanations: 
#10’s photos have higher variance than #22’s. 
#22 resides in an isolated region of the feature 
space, suffering little overlap with other 
subjects, thereby maintaining large AIFs, while 
#10’s region overlaps some other subject’s 
region, thus shrinking both of their respective 
AIFs during training.

There is no ordering over the 40 categories (the people). They are ordered in the plot as in the dataset. Train 
set size 40 looks different because it recruited precisely one instance per class. Thus it exhibits no variance.

33
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Iris on CM1K emulator
150 instances: 

3 classes of 50 instances each 
Chance odds of 3-class classification: 
33.3% 

4 measurements provide a 4D feature vector 
(cm to one decimal point, i.e., mm precision): 

sepal length 
sepal width 
petal length 
petal width 

Goal: classify or predict a flower’s class from its 4D feature vector

Sepal 
length

Sepal 
width

Petal 
length

Petal 
width Class

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
7.0 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
6.3 3.3 6.0 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3.0 5.9 2.1 Iris-virginica
… … … … …

34
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Iris on CM1K emulator 
CM1K data preparation

Drop each feature value's decimal point, thereby converting 
fractional cm at 1/10th precision into integer mm. All Iris values are 
below 256mm, and therefore fit in a single byte. 

Arrange the four features in a four-element array, i.e., of the 
CM1K’s 256 available bytes for pattern representation, use only 
four bytes for the Iris classification problem. 

The maximum theoretical pattern-pair-distance will then be 1020 
(255x4), but the range-bounded max. distance is only 143 since 
the features’ various min and max values are > 0 and < 256.
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Iris on CM1K emulator

Max AIF 128
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The RCE/RBF parameter PresetMaxAIF limits the 
AIF assigned to a newly recruited neuron, thereby 
limiting the prototype’s generalization to classify 
new patterns.  
 
Varying PresetMaxAIF can significantly alter the 
network’s training and subsequent classification.
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Iris on CM1K emulator 
Precision, recall, F1 score F1 Score
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∴On the Iris dataset (max theoretical pattern-
pair-distance = 143), the CM1K performs 
best when trained with a PresetMaxAIF of 16. 

F1 Score
Train set size

15 30 45 60 75 90 105 120 135
128 0.84 0.90 0.89 0.94 0.93 0.90 0.94 0.96 0.93

64 0.83 0.90 0.88 0.93 0.93 0.92 0.93 0.96 0.96
32 0.91 0.90 0.91 0.94 0.94 0.95 0.94 0.94 0.95
16 0.91 0.94 0.94 0.96 0.94 0.95 0.96 0.98 0.97

8 0.63 0.79 0.81 0.85 0.90 0.89 0.90 0.92 0.94
4 0.23 0.24 0.33 0.46 0.53 0.57 0.63 0.69 0.75
2 0.03 0.08 0.11 0.11 0.13 0.18 0.16 0.13 0.13
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Mushroom on CM1K emulator
8124 instances: 

2 classes: edible (4208), poisonous (3916) 
Chance odds of 2-class classification: 
50% 
Best guess odds: 
51.80% (4208 ÷ 8124) 

22 nominal (i.e., categorical) features provide 
a 22D feature vector: 

shape 
texture 
color 
etc. 

Goal: classify or predict a mushroom’s 
edibility or poisonousness from its 22D 
feature vector

class p e e p e e e e p e …
cap-shape x x b x x x b b x b …
cap-surface s s s y s y s y y s …
cap-color n y w w g y w w w y …
bruises t t t t f t t t t t …
odor p a l p n a a l p a …
gill-attachment f f f f f f f f f f …
gill-spacing c c c c w c c c c c …
gill-size n b b n b b b b n b …
gill-color k k n n k n g n p g …
stalk-shape e e e e t e e e e e …
stalk-root e c c e e c c c e c …
stalk-surface-above-ring s s s s s s s s s s …
stalk-surface-below-ring s s s s s s s s s s …
stalk-color-above-ring w w w w w w w w w w …
stalk-color-below-ring w w w w w w w w w w …
veil-type p p p p p p p p p p …
veil-color w w w w w w w w w w …
ring-number o o o o o o o o o o …
ring-type p p p p e p p p p p …
spore-print-color k n n k n k k n k k …
population s n n s a n n s v s …
habitat u g m u g g m m g m …
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Mushroom on CM1K emulator 
CM1K data preparation

The 22 features can assume a total of 126 nominal values, which 
thankfully fits in the CM1K’s 256-byte pattern length. 

Convert a given instance to a 126-element boolean array 
containing precisely 22 True values variously interspersed. 

Convert the boolean array to a byte array where each byte is 
either 0 or 1 (i.e., discard the high 7 bits). 

Of the CM1K’s 256 available bytes for pattern representation, use 
only 126, and of those use only the lowest bit each. 

The maximum theoretical pattern-pair-distance will then be 44, 
e.g., if all 22 features differ in value.
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Mushroom on CM1K emulator

Max AIF 64
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It’s interesting that the number of 
committed neurons is consistent across 
Max AIFs from 64–8, and then rapidly 
grows as Max AIF goes to 6 and finally 4.
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Mushroom on CM1K emulator 
Precision, recall, F1 score Error bars indicate 95% CI

812  1625 2437 3250 4062 4874 5687 6499 7312

6499                                                                                       7312

F1 Score
Train set size

812 1625 2437 3250 4062 4874 5687 6499 7312
64 0.45 0.42 0.44 0.53 0.54 0.62 0.71 0.95 0.99
32 0.45 0.42 0.44 0.53 0.54 0.62 0.69 0.94 0.99
16 0.55 0.47 0.62 0.55 0.88 0.89 0.85 0.99 1.00

8 0.38 0.42 0.46 0.50 0.59 0.69 0.60 0.97 0.99
6 0.29 0.36 0.40 0.45 0.48 0.56 0.49 0.93 0.99
4 0.18 0.21 0.27 0.29 0.32 0.38 0.30 0.71 0.91
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∴On the Mushroom dataset (max theoretical 
pattern-pair-distance = 44), the CM1K performs 
best when trained with a PresetMaxAIF of 16. 

41



/42

Conclusion
Neuromorphic computing consists of chip architectures that implement 
hardware-parallelized neural networks, drawing basic design inspiration from 
the organization of the brain. 

Fundamental (i.e., Big-O) improvements in performance (constant time 
scaling with problem size where classical neural network simulations exhibit 
linear slowdown). 

2–3 orders-of-magnitude improvement in energy efficiency, enabling entirely 
new applications, such as bringing pattern recognition to mobile devices. 

But, it is a nascent technology. Commercial designs are either: 

Affordable but of modest neuron capacity and modeling complexity 
(CM1K, Intel Curie). 

Less affordable and still of limited complexity, but offering greater network 
capacity (modularly networked CM1Ks). 

Far less affordable, or less available to the public, or still in research stages
—but of greater computational complexity and generality (IBM TrueNorth, 
MIT Eyeriss, Qualcomm Zeroth, KnuPath).
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